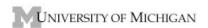
open.michigan

Author(s): Josh Bon, Jake Moline

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/


We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not** a **tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain - Government: Works that are produced by the U.S. Government. (17 USC § 105)

Public Domain - Expired: Works that are no longer protected due to an expired copyright term.

Public Domain - Self Dedicated: Works that a copyright holder has dedicated to the public domain.

(c) 22850 Creative Commons – Zero Waiver

Creative Commons – Attribution License

Creative Commons – Attribution Share Alike License

© IVAC Creative Commons – Attribution Noncommercial License

Creative Commons – Attribution Noncommercial Share Alike License

GNU - Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open. Michigan has used under a Fair Use determination. }

S FAIR USE

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

The Physics of Angry Birds

Introduction: Names, Engineering Students/Majors (Josh)

- Question: What is engineering?
- Scientists that want to build/make things, Creative and innovative technology, Interact with things on a daily basis

(Show Angry Birds Video)

Question: Who has played Angry Birds before?

Question: What physics concepts can you see at work in Angry Birds?

The Physics of Angry Birds: (Jake)

- Projectile Motion
- Collisions and Momentum
- Kinetic and Potential Energy
- Spring/Elastic Physics
- Explosive Physics

Newton's Laws (Josh) (Jake writes important vocab and definitions)

- 1st Law: Inertia An object at rest will stay at rest, and an object in motion will stay in motion unless acted on by a force.
 - Question: Which block will be move the easiest
 - o Block demonstration Moving
- 2nd Law: Force and Acceleration
 - O Question: How do we make the object move?
 - o Definition of acceleration, leading to definition of force
 - Force needs "effort"
- 3rd Law: Equal and Opposite Reactions
 - Block demonstration Pushing on block
 - i. No Acceleration
 - ii. Question: Why?

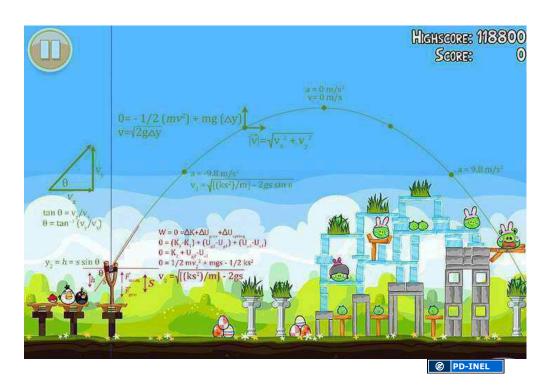
Physics Equations (Jake)

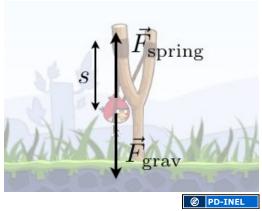
- Displacement: Distance from starting point (x)
- Velocity: Speed or movement
 - \circ Velocity = Displacement / Time (v = x/t)
 - \circ Units: m/s = m / s
- Acceleration: Adding or subtracting speed
 - Acceleration = Velocity / Time (a = v/t)
 - \circ Units: m/s² = (m/s) / s

- · Force: Push
 - Force = Mass × Acceleration (F = ma)
 - O Units: N = kg × m/s²
- Momentum: Quantity of mass and velocity
 - Momentum = Mass × Velocity (p = mv)
 - Units: kg × m/s
- Kinetic Energy: Movement energy
- Kinetic Energy = $1/2 \times Mass \times Velocity^2 (E_k = \frac{1}{2}mv^2)$
 - Units: Joules (J)
- Potential Energy: Stored Energy
- Potential Energy = Mass × Acceleration of Gravity × Height (E_P = mgh)
 - Units: Joules(J)
 - \circ Draw rock & cliff diagram to compare E_k and E_p

Physics of Catapult: (Josh)

- Moments
 - Rotational Motion: Force → Moments
 - Moments = Force × Arm
 - Point of Rotation
 - Example: Door
- Energy
 - O Question: After we load the spoon, where does the launch force come from?
 - o Potential Energy: Storage of force
 - Relate to Slingshot (Angry Birds)
 - O Spring Potential Energy = $\frac{1}{2}$ × Spring Constant × Displacement (E = $\frac{1}{2}$ kx²)
 - Units: Joules(J)
 - Ouestion: Where does the energy go after the launch?
 - o Energy transfer from potential to kinetic
 - Relate to Displacement (Angry Birds)
 - Relate to Impact Force
- Increasing Distance
 - O Question: How can we increase the projectile displacement?
 - Give more energy
 - Increase lever displacement
 - Increase the spring constant
 - Increase arm length
 - Other Types of Catapults
 - Four Bar Linkage
 - Mechanical Advantage = Force Out / Force In


Physics of Projectiles: (Jake)


- To break through the fortress, the birds must have a high momentum
- A high momentum can be achieved by increasing mass, velocity, or both
- Angry Birds Projectiles
 - o (Box momentum equation)
 - Red Bird: p=mv
 - Question: What characteristics of this bird give it an increase in momentum?
 - The Red Bird does not change speed or mass, and therefor as a low momentum
 - The Red Bird is the "control" bird (We compare other birds to this one)
 - Yellow Bird: $p(\uparrow) = mv(\uparrow)$
 - Question: What characteristics of this bird give it an increase in momentum?
 - The Yellow Bird increases its speed, and therefor increases its momentum
 - Dark Red Bird: $p(\uparrow) = m(\uparrow)v$
 - Question: What characteristics of this bird give it an increase in momentum?
 - The Dark Red Bird has a greater mass, and therefor increase its momentum
 - Orange Bird: $p(\uparrow) = m(\uparrow)v$ (optional)
 - Question: What characteristics of this bird give it an increase in momentum?
 - The Orange Bird rapidly increases its mass, and therefor suddenly increases momentum
 - Blue Bird: $p(\uparrow) = m(\uparrow)v$
 - Question: What characteristics of this bird give it an increase in momentum?
 - The Blue Bird increases its mass and therefor increases its momentum
 - Blue Bird also creates a force over a larger area
 - (Diagram of force over larger area on a block)
 - Black Bird: $p(\uparrow) = mv(\uparrow)$
 - Question: What characteristics of this bird give it an increase in momentum?
 - The Black Bird creates an explosion
 - The explosive force causes an increase in momentum
 - (Draw Explosion Diagram)
 - White Bird: $p(\uparrow) = mv(\uparrow)$
 - Question: What characteristics of this bird give it an increase in momentum?
 - The White Bird also creates an explosion
 - The explosive force causes an increase in momentum
 - (Draw White Bird/Bomb diagram)
 - Not all birds have abilities that deal with momentum
 - Green and Pink birds

Question: Anymore questions from the audience?

Distance Question/Activity (Josh)

Catapult Activity (Both)

