open.michigan

Author(s): Andrew Snowden

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain - Government: Works that are produced by the U.S. Government. (17 USC § 105)

Public Domain - Expired: Works that are no longer protected due to an expired copyright term.

Public Domain - Self Dedicated: Works that a copyright holder has dedicated to the public domain.

(c) 2480 Creative Commons – Zero Waiver

Creative Commons – Attribution License

Creative Commons – Attribution Share Alike License

Creative Commons – Attribution Noncommercial License

Creative Commons - Attribution Noncommercial Share Alike License

GNU - Free Documentation License

Make Your Own Assessment

{ Content Open. Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

Lecture 3: Abelian varieties (analytic theory)

This lecture covers two disjoint topics. First, I go over the theory of elliptic curves over finite fields (point counting and the notions of ordinary and supersingular). Then I talk about the abelian varieties over the complex numbers from the analytic point of view.

1 Elliptic curves over finite fields

A good reference for this section is Chapter V of Silvermans "The arithmetic of elliptic curves" (MR0817210).

1.1 Point counting

Let E be an elliptic curve over the finite field \mathbf{F}_q . Then $E^{(q)} = E$, and so the Frobenius map F_q maps E to itself. A point x of $E(\overline{\mathbf{F}}_q)$ belongs to $E(\mathbf{F}_q)$ if and only if it is fixed by F_q (since this is equivalent to it being Galois invariant). Thus $E(\mathbf{F}_q)$ is the set of $\overline{\mathbf{F}}_q$ -points of the kernel of the endomorphism $1 - F_q$. This endomorphism is separable: indeed, if ω is a differential on E then $F_q^*(\omega) = 0$, and so $(1 - F_q)^*\omega = \omega$ is non-zero. We have thus proved the following proposition:

Proposition 1. $\#E(\mathbf{F}_q) = \deg(1 - F_q)$.

Recall that we have defined a positive definite bilinear pairing \langle , \rangle on $\operatorname{End}(E)$, and that $\langle f, f \rangle = \deg(f)$. Appealing to the Cauchy–Schwartz inequality, we find $\langle 1, -F_q \rangle^2 \leq \deg(q) \deg(F_q) = q$, and so $\langle 1, -F_q \rangle \leq \sqrt{q}$. But, by definition,

$$2\langle 1, -F_q \rangle = \deg(1 - F_q) - \deg(1) - \deg(F_q),$$

and so we have the following theorem

Theorem 2 (Hasse bound). $|\#E(\mathbf{F}_q) - q - 1| \le 2\sqrt{q}$.

In other words, we can write $\#E(\mathbf{F}_q)$ as q+1-a, where a is an error term of size at most $2\sqrt{q}$. We have $a=\langle 1,F_q\rangle$ by the above. We also have the following interpretation of a:

Proposition 3. We have $a = \operatorname{tr}(F_q \mid T_{\ell}E)$.

Proof. This is formal: if A is any 2×2 matrix, then

$$tr(A) = 1 + det(A) - det(1 - A).$$

Applying this to the matrix of F_q on $T_{\ell}E$, the result follows.

A Weil number (with respect to q) of weight w is an algebraic number with the property that any complex embedding of it has absolute value $q^{w/2}$.

Theorem 4 (Riemann hypothesis). The eigenvalues of F_q on $T_\ell E$ are Weil numbers of weight 1.

Proof. The characteristic polynomial of F_q on $T_\ell E$ is $T^2 - aT + q$. The eigenvalues are the roots of this polynomial, i.e., $(a \pm \sqrt{a^2 - 4q})/2$. The Hasse bound shows that $a^2 - 4q \le 0$, and so the absolute value of this algebraic number (or its complex conjugate) is \sqrt{q} . This completes the proof.

These are notes for Math 679, taught in the Fall 2013 semester at the University of Michigan by Andrew Snowden.

The zeta function of a variety X/\mathbf{F}_q is defined by

$$Z_X(T) = \exp\left(\sum_{r=1}^{\infty} \#X(\mathbf{F}_q) \frac{T^r}{r}\right).$$

Theorem 5 (Rationality of the zeta function). We have

$$Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$$

Proof. The above results show that

$$\#E(\mathbf{F}_{q^r}) = q^r + 1 - \text{tr}(F_{q^r} \mid T_{\ell}E).$$

Let α and β be the eigenvalues of F_q on $T_\ell E$. Since F_{q^r} is just F_q^r , the eigenvalues of F_{q^r} on $T_\ell(E)$ are α^r and β^r . We thus see that

$$#E(\mathbf{F}_{q^r}) = q^r + 1 - \alpha^r - \beta^r.$$

We now have

$$\sum_{r=1}^{\infty} \#E(\mathbf{F}_{q^r}) \frac{T^r}{r} = -\log(1-T) - \log(1-qT) + \log(1-\alpha T) + \log(1-\beta T),$$

and so

$$Z_E(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)},$$

from which the result easily follows.

Corollary 6. $\#E(\mathbf{F}_{q^r})$ is determined, for any r, from $\#E(\mathbf{F}_q)$.

Suppose that $f: E_1 \to E_2$ is an isogeny. Then f induces a map $T_{\ell}(E_1) \to T_{\ell}(E_2)$ which commutes with Frobenius. Since the kernel of f is finite, the map it induces on Tate modules has finite index image; in particular, it induces an isomorphism after tensoring with \mathbf{Q}_{ℓ} . It follows that the eigenvalues of Frobenius on the two Tate modules agree, and so:

Theorem 7. If E_1 and E_2 are isogenous then $\#E_1(\mathbf{F}_q) = \#E_2(\mathbf{F}_q)$.

In fact, the converse to this theorem is also true, as shown by Tate.

1.2 Ordinary and supersingular curves

Let E be an elliptic curve over a field k of characteristic p. Then the map $[p]: E \to E$ is not separable and has degree p^2 . It follows that the separable degree of [p] is either p or 1. In the first case, E is called ordinary, and in the second case, supersingular. The following result follows immediately from the definitions, and earlier results:

Proposition 8. If E is ordinary then $E[p](\overline{k}) \cong \mathbb{Z}/p\mathbb{Z}$. If E is supersingular then $E[p](\overline{k}) = 0$.

We will revisit the ordinary/supesingular dichotomy after discussing group schemes. For now, we prove just one more result.

Proposition 9. If E is supersingular then $j(E) \in \mathbf{F}_{p^2}$.

Proof. Suppose E is supersingular. Then [p] is completely inseparable, and thus factors as $E \to E^{(p^2)} \to E$, where the first map is the Frobenius F_{p^2} and the second map is an isomorphism (since it has degree 1). Since $j(E^{(p^2)})$ is equal to $F_{p^2}(j(E))$ and j is an isomorphism invariant, we see that $j(E) = F_{p^2}(j(E))$, from which the result follows.

Corollary 10. Assume k algebraically closed. Then there are only finitely many supersingular elliptic curves over k, and they can all be defined over \mathbf{F}_{n^2} .

Proof. An elliptic curve over an algebraically closed field descends to the field of its j-invariant, which gives the final statement. The finiteness statement follows immediately from this.

2 Abelian varieties

A good reference for this section is the first chapter of Mumford's "Abelian varieties" (MR0282985).

2.1 Definition and relation to elliptic curves

Definition 11. An abelian variety is a complete connected group variety (over some field). \Box

Example 12. An elliptic curve is a one-dimensional abelian variety.

Proposition 13. Every one-dimensional abelian variety is an elliptic curve.

Proof. Let A be a one-dimensional abelian variety. We must show that A has genus 1. Pick a non-zero cotangent vector to A at the identity. The group law on A allows us to translate this vector uniquely to any other point, and so we can find a nowhere vanishing holomorphic 1-form on A. This provides an isomorphism $\Omega_A^1 \cong \mathcal{O}_A$, and so $H^0(A, \Omega_A^1)$ is one-dimensional.

For the rest of this lecture we work over the complex numbers.

2.2 Compact complex Lie groups

Let A be an abelian variety. Then $A(\mathbf{C})$ is a connected compact complex Lie group. We begin by investigating such groups. Thus let X be such a group. Define V to be the tangent space to X at the identity (the Lie algebra). Let $g = \dim(X)$. Recall that there is a holomorphic map $\exp \colon V \to X$. We have the following results:

- X is commutative. Reason: the map $Ad: X \to End(V)$ is holomorphic, and therefore constant, since X is compact and End(V) is a vector space. Since Ad assumes the value 1, this is the only value it assumes. It follows that X acts trivially on End(V), and so V is a commutative Lie algebra. The result follows.
- exp is a homomorphism. Reason: this follows from commutativity.
- exp is surjective. Reason: the image of exp contains an open subset of X, since exp is a local homeomorphism. The image of exp is also a subgroup of X. Thus the image is an open subgroup U. The quotient X/U is discrete, since U is open, and connected, since X is, and is therefore a point. Thus X = U.
- $M = \ker(\exp)$ is a lattice in V, and thus isomorphic to \mathbf{Z}^{2g} . Reason: since exp is a local homeomorphism, M is discrete. Since X = V/M is compact, M is cocompact.

- X is a torus, i.e., isomorphic to a product of circles. Reason: clear from X = V/M.
- The *n*-torsion X[n] is isomorphic to $(\mathbf{Z}/n\mathbf{Z})^{2g}$. Reason: X[n] is isomorphic to $\frac{1}{n}M/M$ by the exponential map.
- $H^i(X, \mathbf{Z})$ is naturally isomorphic to $Hom(\bigwedge^i(M), \mathbf{Z})$. Reason: a simple application of the Künneth formula shows that if T is any torus then cup product induces an isomorphism $\bigwedge^i(H^1(T, \mathbf{Z})) \to H^i(T, \mathbf{Z})$. For our torus X, we have $H_1(X, \mathbf{Z}) = M$, and the result follows.

2.3 Line bundles on complex tori

Let X = V/M, as above. Define $\operatorname{Pic}(X)$ (the Picard group of X) to be the set of isomorphism classes of line bundles on X. This is a group under tensor product. Define $\operatorname{Pic}^0(X)$ to be the subgroup consisting of those bundles which are topologically trivial, and define $\operatorname{NS}(X)$ (the Néron–Severi group) to be the quotient $\operatorname{Pic}(X)/\operatorname{Pic}^0(X)$. We are now going to describe how to compute these groups in terms of V and M.

A Riemann form on V (with respect to M) is a Hermitian form H such that $E = \operatorname{Im} H$ takes integer values when restricted to M. (Note: some people include positive definite in their definition of Riemann form; we do not.) Let \mathcal{R} be the set of Riemann forms, which forms a group under addition. Let \mathcal{P} be the set of pairs (H, α) , where $H \in \mathcal{R}$ and $\alpha \colon M \to U(1)$ is a function satisfying $\alpha(x+y) = e^{i\pi E(x,y)}\alpha(x)\alpha(y)$. (Here U(1) is the set of complex numbers of absolute value 1.) We give \mathcal{P} the structure of a group by $(H_1, \alpha_1)(H_2, \alpha_2) = (H_1 + H_2, \alpha_1\alpha_2)$. Let \mathcal{P}^0 be the group of homomorphisms $M \to U(1)$, regarded as the subgroup of \mathcal{P} with H = 0.

Theorem 14 (Appell–Humbert). We have an isomorphism $Pic(X) \cong \mathcal{P}$, which induces isomorphisms $Pic^0(X) \cong \mathcal{P}^0$ and $NS(X) \cong \mathcal{R}$.

Some remarks on the theorem:

- Let $\pi \colon V \to X$ be the quotient map. If L is a line bundle on X then $\pi^*(L)$ is the trivial line bundle on V, since all line bundles on V are trivial. Furthermore, $\pi^*(L)$ is M-equivariant, and L can be recovered as the quotient of $\pi^*(L)$ by M. Thus to prove the theorem, it suffices to understand the M-equivariant structures on the trivial line bundle over V.
- Let $(H, \alpha) \in \mathcal{P}$. Define an action of M on $V \times \mathbf{C}$ by

$$\lambda \cdot (v, z) = (v + \lambda, \alpha(\lambda)e^{\pi H(v, \lambda) + \pi H(\lambda, \lambda)/2}z).$$

This gives the trivial bundle on V an M-equivariance. We let $L(H, \alpha)$ be the quotient, a line bundle on X. The isomorphism $\mathcal{P} \to \operatorname{Pic}(X)$ is $(H, \alpha) \mapsto L(H, \alpha)$. The main content of the theorem is to show that the equivariances we just constructed are all of them.

- Remark. There is a bijection between Hermitian forms H on V and alternating real forms E satisfying E(ix,iy)=E(x,y). The correspondence takes H to $E=\operatorname{Im} H$, and E to H(x,y)=E(ix,y)+iE(x,y). Thus a Riemann form H is determined by the associated alternating pairing on M.
- Let $(H, \alpha) \in \mathcal{P}$, and let $E = \operatorname{Im} H$. Then E defines an element of $\operatorname{Hom}(\bigwedge^2(M), \mathbf{Z})$. But we have previously identified this group with $H^2(X, \mathbf{Z})$. In fact, E, regarded as an element of H^2 , is the Chern class $c_1(L(H, \alpha))$. We thus see that $L(H, \alpha)$ is topologically trivial if and only if E = 0, which is the same as H = 0. This gives the isomorphic $\operatorname{Pic}^0(X) \cong \mathcal{P}^0$.

Let $x \in X$ and let $t_x \colon X \to X$ be the translation-by-x map, i.e., $t_x(y) = x + y$. Given a line bundle L on X, we get a new line bundle $t_x^*(L)$ on X. We thus get an action of X on Pic(X), with x acting by t_x^* . The following proposition describes this action in terms of the Appell-Humbert theorem.

Proposition 15. We have an isomorphism $t_x^*L(H,\alpha) \cong L(H,\alpha \cdot e^{2\pi i E(x,-)})$.

A few remarks:

- First, we note that $\lambda \mapsto e^{2\pi i E(x,\lambda)}$ makes sense as a function on M, since E takes integral values on M.
- The line bundle $L(H,\alpha)$ is translation invariant (i.e., isomorphic to its pullbacks by t_x^*) if and only if H=0. Indeed, it is clear that if H=0 then $L(H,\alpha)$ is translation invariant. Conversely, if $L(H,\alpha)$ is translation invariant then $e^{2\pi i E(x,\lambda)}=1$ for all $x\in V$ and all $\lambda\in M$, from which it easily follows that E=0, and so H=0 as well. We can therefore characterize $\operatorname{Pic}^0(X)$ as the group of translation invariant line bundles on X.
- Let L be a line bundle on X. Then $x \mapsto t_x^*(L) \otimes L^*$ defines a group homomorphism $\phi_L \colon X \to \operatorname{Pic}^0(X)$. Indeed, taking $L = L(H, \alpha)$, we see that $t_x^*(L) \otimes L^*$ is equal to $L(0, e^{2\pi i E(x, -)})$. It follows that, in fact, ϕ_L depends only on $c_1(L)$.

2.4 Sections of line bundles

A θ -function on V with respect to $(H, \alpha) \in \mathcal{P}$ is a holomorphic function $\theta \colon V \to \mathbf{C}$ satisfying the functional equation

$$\theta(v + \lambda) = \alpha(\lambda)e^{\pi H(v,\lambda) + \pi H(\lambda,\lambda)/2}.$$

Given a section s of $L(H,\alpha)$ over X, we obtain a section $\pi^*(s)$ of $\pi^*(L(H,\alpha))$ over V. Identifying $\pi^*(L(H,\alpha))$ with the trivial bundle, $\pi^*(s)$ becomes a function on V, and the equivariance condition is exactly the above functional equation. We therefore find:

Proposition 16. The space $\Gamma(X, L(H, \alpha))$ is canonically identified with the space of θ -functions for (H, α) .

Suppose that H is degenerate, and let V_0 be its kernel (i.e., $x \in V_0$ if H(x, -) = 0). Then V_0 is also the kernel of E, and since E takes integral values on M, it follows that $M_0 = V_0 \cap M$ is a lattice in V_0 . Let θ be a θ -function, and u a large element of V_0 . Write $u = \lambda + \epsilon$ with $\lambda \in M_0$ and ϵ in some fundamental domain. Then for any $v \in V$ we have

$$|\theta(v+u)| = |\theta(v+\epsilon)|$$

since $H(\lambda, -) = 0$. It follows that $u \mapsto \theta(v + u)$ is a bounded holomorphic function on V_0 , and therefore constant. Thus θ factors through V/V_0 . In particular, $L(H, \alpha)$ is not ample.

Now suppose that H(w, w) < 0 for some $w \in V$. Let t be a large complex number and write $tw = \lambda + \epsilon$, similar to the above. Then

$$|\theta(v+tw)| = |\theta(v+\epsilon)|e^{\pi \operatorname{Re}(H(v+\epsilon,\lambda)) + \pi H(\lambda,\lambda)/2}.$$

The quantity $H(\lambda, \lambda)$ is dominant, and very negative. We thus see that $|\theta(v+tw)| \to 0$ as $|t| \to \infty$, which implies $\theta(v+tw)$ is 0 as a function of t. Thus $\theta(v) = 0$ for all v, and so 0 is the only θ -function.

We have thus shown that if H is not positive definite then $L(H, \alpha)$ is not ample. The converse holds as well:

Theorem 17 (Lefschetz). The bundle $L(H,\alpha)$ is ample if and only if H is positive definite.

Some remarks:

- This theorem shows that X is a projective variety is and only if there exists a positive definite Riemann form on V.
- In fact, one can show that if X is algebraic then it is necessarily projective, and so X is algebraic if and only if it has a positive definite Riemann form. One can show that if H is positive definite then $L(H, \alpha)^{\otimes n}$ is very ample for all $n \geq 3$.
- Suppose E is the elliptic curve given by $\mathbb{C}/\langle 1,\tau\rangle$. Then $H(x,y)=\frac{x\overline{y}}{|\operatorname{Im}(\tau)|}$ is a positive definite Riemann form on \mathbb{C} . This recovers the fact that all one-dimensional complex tori are algebraic.
- Most complex tori of higher dimension do not possess even a non-zero Riemann form, and so most are not algebraic.

2.5 Maps of tori

A map of complex tori $X \to Y$ is a holomorphic group homomorphism. In fact, any holomorphic map taking 0 to 0 is a group homomorphism. W write Hom(X,Y) for the group of maps. An isogeny is a map of tori which is surjective and has finite kernel. The degree of the isogeny is the cardinality of the kernel.

Example 18. Multiplication-by-n, denoted [n], is an isogeny of degree n^{2g} .

2.6 The dual torus

Let X = V/M be a complex torus. Let \overline{V}^* be the vector space of conjugate-linear functions $V \to \mathbf{C}$, and let $M^{\vee} \subset \overline{V}^*$ be the set of such functions f for which $\operatorname{Im} f(M) \subset \mathbf{Z}$. Then M^{\vee} is a lattice in \overline{V}^* , and we define $X^{\vee} = \overline{V}^*/M^{\vee}$. We call X^{\vee} the dual torus of X. Note that we have a natural isomorphism $(X^{\vee})^{\vee} = X$.

Formation of the dual torus is clearly a functor: if $f: X \to Y$ is a map of tori then there is a natural map $f^{\vee}: Y^{\vee} \to X^{\vee}$. If f is an isogeny, then so is f^{\vee} , and they have the same degree. Even better:

Proposition 19. If f is an isogeny then $\ker(f)$ and $\ker(f^{\vee})$ are canonically dual (in the sense of finite abelian groups).

Proof. Write $X = V_1/M_1$ and $Y = V_2/M_2$, and let $g: V_1 \to V_2$ be the linear map inducing. Then $\ker(f) = g^{-1}(M_2)/M_1$, while $\ker(f^{\vee}) = (\overline{g}^*)^{-1}(M_1^{\vee})/M_2^{\vee}$. If $x \in \ker(f)$ and $y \in \ker(f^{\vee})$ then $\langle g(x), y \rangle$ is a rational number (since $g(x) \in M_2$ and y is in a lattice containing M_2^{\vee} with finite index), and is well-defined up to integers. We thus have a pairing $\ker(f) \times \ker(f^{\vee}) \to \mathbf{Q}/\mathbf{Z}$ with $n = \deg(f)$, which puts the two groups in duality.

Applying this in the case where X = Y and f = [n], we see that X[n] and $X^{\vee}[n]$ are in duality. This gives us a canonical pairing $X[n] \times X^{\vee}[n] \to \mathbf{Z}/n\mathbf{Z} \cong \mu_n$, which is called the Weil pairing.

Proposition 20. We have a natural isomorphism of groups $X^{\vee} = \operatorname{Pic}^{0}(X)$.

Proof. The map $\overline{V}^* \to \mathcal{P}^0$ which takes $f \in \overline{V}^*$ to the map $\lambda \mapsto e^{2\pi i \operatorname{Im}(f(\lambda))}$ is easily seen to be a surjective homomorphism with kernel M^{\vee} . It thus descends to an isomorphism $X^{\vee} \to \operatorname{Pic}^0(X)$. \square

Let H be a Riemann form on V. Then $v \mapsto H(V, -)$ defines an isomorphism of complex vector spaces $V \to \overline{V}^*$, and carries M into M^\vee . It thus defines a map $\phi_H \colon X \to X^\vee$ of complex tori. This map is an isogeny if and only if H is non-degenerate. Identifying X^\vee with $\operatorname{Pic}^0(X)$, ϕ_H coincides with ϕ_L , where $L = L(H, \alpha)$ for any α . A polarization of X is a map of the form ϕ_H (or ϕ_L) with H positive-definite (or L ample). A principal polarization is a polarization of degree 1. We thus see that X admits a polarization if and only if it is algebraic.