




Lecture 3: Abelian varieties (analytic theory)

This lecture covers two disjoint topics. First, I go over the theory of elliptic curves over finite
fields (point counting and the notions of ordinary and supersingular). Then I talk about the abelian
varieties over the complex numbers from the analytic point of view.

1 Elliptic curves over finite fields

A good reference for this section is Chapter V of Silvermans “The arithmetic of elliptic curves”
(MR0817210).

1.1 Point counting

Let E be an elliptic curve over the finite field Fq. Then E(q) = E, and so the Frobenius map Fq

maps E to itself. A point x of E(Fq) belongs to E(Fq) if and only if it is fixed by Fq (since this
is equivalent to it being Galois invariant). Thus E(Fq) is the set of Fq-points of the kernel of the
endomorphism 1 � Fq. This endomorphism is separable: indeed, if ! is a di↵erential on E then
F ⇤
q (!) = 0, and so (1� Fq)⇤! = ! is non-zero. We have thus proved the following proposition:

Proposition 1. #E(Fq) = deg(1� Fq).

Recall that we have defined a positive definite bilinear pairing h, i on End(E), and that hf, fi =
deg(f). Appealing to the Cauchy–Schwartz inequality, we find h1,�Fqi2  deg(q) deg(Fq) = q, and
so h1,�Fqi  p

q. But, by definition,

2h1,�Fqi = deg(1� Fq)� deg(1)� deg(Fq),

and so we have the following theorem

Theorem 2 (Hasse bound). |#E(Fq)� q � 1|  2
p
q.

In other words, we can write #E(Fq) as q+1�a, where a is an error term of size at most 2
p
q.

We have a = h1, Fqi by the above. We also have the following interpretation of a:

Proposition 3. We have a = tr(Fq | T`E).

Proof. This is formal: if A is any 2⇥ 2 matrix, then

tr(A) = 1 + det(A)� det(1�A).

Applying this to the matrix of Fq on T`E, the result follows.

A Weil number (with respect to q) of weight w is an algebraic number with the property that
any complex embedding of it has absolute value qw/2.

Theorem 4 (Riemann hypothesis). The eigenvalues of Fq on T`E are Weil numbers of weight 1.

Proof. The characteristic polynomial of Fq on T`E is T 2 � aT + q. The eigenvalues are the roots

of this polynomial, i.e., (a ±
p
a2 � 4q)/2. The Hasse bound shows that a2 � 4q  0, and so

the absolute value of this algebraic number (or its complex conjugate) is
p
q. This completes the

proof.
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The zeta function of a variety X/Fq is defined by

ZX(T ) = exp

 1X

r=1

#X(Fq)
T r

r

!
.

Theorem 5 (Rationality of the zeta function). We have

ZE(T ) =
1� aT + qT 2

(1� T )(1� qT )
.

Proof. The above results show that

#E(Fqr) = qr + 1� tr(Fqr | T`E).

Let ↵ and � be the eigenvalues of Fq on T`E. Since Fqr is just F r
q , the eigenvalues of Fqr on T`(E)

are ↵r and �r. We thus see that

#E(Fqr) = qr + 1� ↵r � �r.

We now have

1X

r=1

#E(Fqr)
T r

r
= � log(1� T )� log(1� qT ) + log(1� ↵T ) + log(1� �T ),

and so

ZE(T ) =
(1� ↵T )(1� �T )

(1� T )(1� qT )
,

from which the result easily follows.

Corollary 6. #E(Fqr) is determined, for any r, from #E(Fq).

Suppose that f : E1 ! E2 is an isogeny. Then f induces a map T`(E1) ! T`(E2) which
commutes with Frobenius. Since the kernel of f is finite, the map it induces on Tate modules has
finite index image; in particular, it induces an isomorphism after tensoring with Q`. It follows that
the eigenvalues of Frobenius on the two Tate modules agree, and so:

Theorem 7. If E1 and E2 are isogenous then #E1(Fq) = #E2(Fq).

In fact, the converse to this theorem is also true, as shown by Tate.

1.2 Ordinary and supersingular curves

Let E be an elliptic curve over a field k of characteristic p. Then the map [p] : E ! E is not
separable and has degree p2. It follows that the separable degree of [p] is either p or 1. In the
first case, E is called ordinary, and in the second case, supersingular. The following result follows
immediately from the definitions, and earlier results:

Proposition 8. If E is ordinary then E[p](k) ⇠= Z/pZ. If E is supersingular then E[p](k) = 0.

We will revisit the ordinary/supesingular dichotomy after discussing group schemes. For now,
we prove just one more result.

Proposition 9. If E is supersingular then j(E) 2 Fp2.

2



Proof. Suppose E is supersingular. Then [p] is completely inseparable, and thus factors as E !
E(p2) ! E, where the first map is the Frobenius Fp2 and the second map is an isomorphism (since

it has degree 1). Since j(E(p2)) is equal to Fp2(j(E)) and j is an isomorphism invariant, we see
that j(E) = Fp2(j(E)), from which the result follows.

Corollary 10. Assume k algebraically closed. Then there are only finitely many supersingular

elliptic curves over k, and they can all be defined over Fp2.

Proof. An elliptic curve over an algebraically closed field descends to the field of its j-invariant,
which gives the final statement. The finiteness statement follows immediately from this.

2 Abelian varieties

A good reference for this section is the first chapter of Mumford’s “Abelian varieties” (MR0282985).

2.1 Definition and relation to elliptic curves

Definition 11. An abelian variety is a complete connected group variety (over some field).

Example 12. An elliptic curve is a one-dimensional abelian variety.

Proposition 13. Every one-dimensional abelian variety is an elliptic curve.

Proof. Let A be a one-dimensional abelian variety. We must show that A has genus 1. Pick a
non-zero cotangent vector to A at the identity. The group law on A allows us to translate this
vector uniquely to any other point, and so we can find a nowhere vanishing holomorphic 1-form on
A. This provides an isomorphism ⌦1

A
⇠= OA, and so H0(A,⌦1

A) is one-dimensional.

For the rest of this lecture we work over the complex numbers.

2.2 Compact complex Lie groups

Let A be an abelian variety. Then A(C) is a connected compact complex Lie group. We begin
by investigating such groups. Thus let X be such a group. Define V to be the tangent space to
X at the identity (the Lie algebra). Let g = dim(X). Recall that there is a holomorphic map
exp: V ! X. We have the following results:

• X is commutative. Reason: the map Ad: X ! End(V ) is holomorphic, and therefore con-
stant, since X is compact and End(V ) is a vector space. Since Ad assumes the value 1,
this is the only value it assumes. It follows that X acts trivially on End(V ), and so V is a
commutative Lie algebra. The result follows.

• exp is a homomorphism. Reason: this follows from commutativity.

• exp is surjective. Reason: the image of exp contains an open subset of X, since exp is a
local homeomorphism. The image of exp is also a subgroup of X. Thus the image is an open
subgroup U . The quotient X/U is discrete, since U is open, and connected, since X is, and
is therefore a point. Thus X = U .

• M = ker(exp) is a lattice in V , and thus isomorphic to Z

2g. Reason: since exp is a local
homeomorphism, M is discrete. Since X = V/M is compact, M is cocompact.
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• X is a torus, i.e., isomorphic to a product of circles. Reason: clear from X = V/M .

• The n-torsion X[n] is isomorphic to (Z/nZ)2g. Reason: X[n] is isomorphic to 1
nM/M by the

exponential map.

• Hi(X,Z) is naturally isomorphic to Hom(
Vi(M),Z). Reason: a simple application of the

Künneth formula shows that if T is any torus then cup product induces an isomorphismVi(H1(T,Z)) ! Hi(T,Z). For our torus X, we have H1(X,Z) = M , and the result follows.

2.3 Line bundles on complex tori

Let X = V/M , as above. Define Pic(X) (the Picard group of X) to be the set of isomorphism
classes of line bundles on X. This is a group under tensor product. Define Pic0(X) to be the
subgroup consisting of those bundles which are topologically trivial, and define NS(X) (the Néron–
Severi group) to be the quotient Pic(X)/Pic0(X). We are now going to describe how to compute
these groups in terms of V and M .

A Riemann form on V (with respect to M) is a Hermitian form H such that E = ImH takes
integer values when restricted to M . (Note: some people include positive definite in their definition
of Riemann form; we do not.) Let R be the set of Riemann forms, which forms a group under
addition. Let P be the set of pairs (H,↵), where H 2 R and ↵ : M ! U(1) is a function satisfying
↵(x + y) = ei⇡E(x,y)↵(x)↵(y). (Here U(1) is the set of complex numbers of absolute value 1.) We
give P the structure of a group by (H1,↵1)(H2,↵2) = (H1 + H2,↵1↵2). Let P0 be the group of
homomorphisms M ! U(1), regarded as the subgroup of P with H = 0.

Theorem 14 (Appell–Humbert). We have an isomorphism Pic(X) ⇠= P, which induces isomor-

phisms Pic0(X) ⇠= P0
and NS(X) ⇠= R.

Some remarks on the theorem:

• Let ⇡ : V ! X be the quotient map. If L is a line bundle on X then ⇡⇤(L) is the trivial line
bundle on V , since all line bundles on V are trivial. Furthermore, ⇡⇤(L) is M -equivariant,
and L can be recovered as the quotient of ⇡⇤(L) by M . Thus to prove the theorem, it su�ces
to understand the M -equivariant structures on the trivial line bundle over V .

• Let (H,↵) 2 P. Define an action of M on V ⇥C by

� · (v, z) = (v + �,↵(�)e⇡H(v,�)+⇡H(�,�)/2z).

This gives the trivial bundle on V an M -equivariance. We let L(H,↵) be the quotient, a line
bundle on X. The isomorphism P ! Pic(X) is (H,↵) 7! L(H,↵). The main content of the
theorem is to show that the equivariances we just constructed are all of them.

• Remark. There is a bijection between Hermitian forms H on V and alternating real forms
E satisfying E(ix, iy) = E(x, y). The correspondence takes H to E = ImH, and E to
H(x, y) = E(ix, y) + iE(x, y). Thus a Riemann form H is determined by the associated
alternating pairing on M .

• Let (H,↵) 2 P, and let E = ImH. Then E defines an element of Hom(
V2(M),Z). But we

have previously identified this group with H2(X,Z). In fact, E, regarded as an element of
H2, is the Chern class c1(L(H,↵)). We thus see that L(H,↵) is topologically trivial if and
only if E = 0, which is the same as H = 0. This gives the isomorphic Pic0(X) ⇠= P0.
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Let x 2 X and let tx : X ! X be the translation-by-x map, i.e., tx(y) = x + y. Given a line
bundle L on X, we get a new line bundle t⇤x(L) on X. We thus get an action of X on Pic(X), with
x acting by t⇤x. The following proposition describes this action in terms of the Appell–Humbert
theorem.

Proposition 15. We have an isomorphism t⇤xL(H,↵) ⇠= L(H,↵ · e2⇡iE(x,�)).

A few remarks:

• First, we note that � 7! e2⇡iE(x,�) makes sense as a function on M , since E takes integral
values on M .

• The line bundle L(H,↵) is translation invariant (i.e., isomorphic to its pullbacks by t⇤x) if
and only if H = 0. Indeed, it is clear that if H = 0 then L(H,↵) is translation invariant.
Conversely, if L(H,↵) is translation invariant then e2⇡iE(x,�) = 1 for all x 2 V and all � 2 M ,
from which it easily follows that E = 0, and so H = 0 as well. We can therefore characterize
Pic0(X) as the group of translation invariant line bundles on X.

• Let L be a line bundle on X. Then x 7! t⇤x(L)⌦L⇤ defines a group homomorphism �L : X !
Pic0(X). Indeed, taking L = L(H,↵), we see that t⇤x(L) ⌦ L⇤ is equal to L(0, e2⇡iE(x,�)). It
follows that, in fact, �L depends only on c1(L).

2.4 Sections of line bundles

A ✓-function on V with respect to (H,↵) 2 P is a holomorphic function ✓ : V ! C satisfying the
functional equation

✓(v + �) = ↵(�)e⇡H(v,�)+⇡H(�,�)/2.

Given a section s of L(H,↵) over X, we obtain a section ⇡⇤(s) of ⇡⇤(L(H,↵)) over V . Identifying
⇡⇤(L(H,↵)) with the trivial bundle, ⇡⇤(s) becomes a function on V , and the equivariance condition
is exactly the above functional equation. We therefore find:

Proposition 16. The space �(X,L(H,↵)) is canonically identified with the space of ✓-functions
for (H,↵).

Suppose that H is degenerate, and let V0 be its kernel (i.e., x 2 V0 if H(x,�) = 0). Then V0

is also the kernel of E, and since E takes integral values on M , it follows that M0 = V0 \M is a
lattice in V0. Let ✓ be a ✓-function, and u a large element of V0. Write u = �+ ✏ with � 2 M0 and
✏ in some fundamental domain. Then for any v 2 V we have

|✓(v + u)| = |✓(v + ✏)|
since H(�,�) = 0. It follows that u 7! ✓(v + u) is a bounded holomorphic function on V0, and
therefore constant. Thus ✓ factors through V/V0. In particular, L(H,↵) is not ample.

Now suppose that H(w,w) < 0 for some w 2 V . Let t be a large complex number and write
tw = �+ ✏, similar to the above. Then

|✓(v + tw)| = |✓(v + ✏)|e⇡Re(H(v+✏,�))+⇡H(�,�)/2.

The quantity H(�,�) is dominant, and very negative. We thus see that |✓(v+ tw)| ! 0 as |t| ! 1,
which implies ✓(v + tw) is 0 as a function of t. Thus ✓(v) = 0 for all v, and so 0 is the only
✓-function.

We have thus shown that if H is not positive definite then L(H,↵) is not ample. The converse
holds as well:
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Theorem 17 (Lefschetz). The bundle L(H,↵) is ample if and only if H is positive definite.

Some remarks:

• This theorem shows that X is a projective variety is and only if there exists a positive definite
Riemann form on V .

• In fact, one can show that if X is algebraic then it is necessarily projective, and so X is
algebraic if and only if it has a positive definite Riemann form. One can show that if H is
positive definite then L(H,↵)⌦n is very ample for all n � 3.

• Suppose E is the elliptic curve given by C/h1, ⌧i. Then H(x, y) = xy
| Im(⌧)| is a positive

definite Riemann form on C. This recovers the fact that all one-dimensional complex tori are
algebraic.

• Most complex tori of higher dimension do not possess even a non-zero Riemann form, and so
most are not algebraic.

2.5 Maps of tori

A map of complex tori X ! Y is a holomorphic group homomorphism. In fact, any holomorphic
map taking 0 to 0 is a group homomorphism. W write Hom(X,Y ) for the group of maps. An
isogeny is a map of tori which is surjective and has finite kernel. The degree of the isogeny is the
cardinality of the kernel.

Example 18. Multiplication-by-n, denoted [n], is an isogeny of degree n2g.

2.6 The dual torus

Let X = V/M be a complex torus. Let V
⇤
be the vector space of conjugate-linear functions V ! C,

and let M_ ⇢ V
⇤
be the set of such functions f for which Im f(M) ⇢ Z. Then M_ is a lattice in

V
⇤
, and we define X_ = V

⇤
/M_. We call X_ the dual torus of X. Note that we have a natural

isomorphism (X_)_ = X.
Formation of the dual torus is clearly a functor: if f : X ! Y is a map of tori then there is a

natural map f_ : Y _ ! X_. If f is an isogeny, then so is f_, and they have the same degree. Even
better:

Proposition 19. If f is an isogeny then ker(f) and ker(f_) are canonically dual (in the sense of

finite abelian groups).

Proof. Write X = V1/M1 and Y = V2/M2, and let g : V1 ! V2 be the linear map inducing. Then
ker(f) = g�1(M2)/M1, while ker(f_) = (g⇤)�1(M_

1 )/M
_
2 . If x 2 ker(f) and y 2 ker(f_) then

hg(x), yi is a rational number (since g(x) 2 M2 and y is in a lattice containing M_
2 with finite

index), and is well-defined up to integers. We thus have a pairing ker(f) ⇥ ker(f_) ! Q/Z with
n = deg(f), which puts the two groups in duality.

Applying this in the case where X = Y and f = [n], we see that X[n] and X_[n] are in duality.
This gives us a canonical pairing X[n]⇥X_[n] ! Z/nZ ⇠= µn, which is called the Weil pairing.

Proposition 20. We have a natural isomorphism of groups X_ = Pic0(X).

Proof. The map V
⇤ ! P0 which takes f 2 V

⇤
to the map � 7! e2⇡i Im(f(�)) is easily seen to be a

surjective homomorphism with kernel M_. It thus descends to an isomorphism X_ ! Pic0(X).

6



Let H be a Riemann form on V . Then v 7! H(V,�) defines an isomorphism of complex vector
spaces V ! V

⇤
, and carries M into M_. It thus defines a map �H : X ! X_ of complex tori. This

map is an isogeny if and only if H is non-degenerate. Identifying X_ with Pic0(X), �H coincides
with �L, where L = L(H,↵) for any ↵. A polarization of X is a map of the form �H (or �L) with
H positive-definite (or L ample). A principal polarization is a polarization of degree 1. We thus
see that X admits a polarization if and only if it is algebraic.
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