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Lecture 3: Abelian varieties (analytic theory)

This lecture covers two disjoint topics. First, I go over the theory of elliptic curves over finite
fields (point counting and the notions of ordinary and supersingular). Then I talk about the abelian
varieties over the complex numbers from the analytic point of view.

1 Elliptic curves over finite fields

A good reference for this section is Chapter V of Silvermans “The arithmetic of elliptic curves”
(MR0817210).

1.1 Point counting

Let E be an elliptic curve over the finite field F,. Then E@ = E, and so the Frobenius map F,

maps E to itself. A point z of E(F,) belongs to E(F,) if and only if it is fixed by F, (since this
is equivalent to it being Galois invariant). Thus E(F,) is the set of Fy-points of the kernel of the
endomorphism 1 — Fj;,. This endomorphism is separable: indeed, if w is a differential on E then
Fj(w) =0, and so (1 — Fy)*w = w is non-zero. We have thus proved the following proposition:

Proposition 1. #E(F,) = deg(1 — Fy).

Recall that we have defined a positive definite bilinear pairing (,) on End(E), and that (f, f) =
deg(f). Appealing to the Cauchy—Schwartz inequality, we find (1, —F,)? < deg(q) deg(F,) = ¢, and
so (1,—F,) < ,/q. But, by definition,

2(1, —Fy) = deg(1 — Fyy) — deg(1) — deg(Fy),
and so we have the following theorem
Theorem 2 (Hasse bound). |#E(F,) —q— 1| <2,/3.

In other words, we can write #E(F,) as ¢+ 1 —a, where a is an error term of size at most 2,/g.
We have a = (1, F;) by the above. We also have the following interpretation of a:

Proposition 3. We have a = tr(F, | T, E).
Proof. This is formal: if A is any 2 X 2 matrix, then
tr(A) = 1+ det(A) — det(1 — A).
Applying this to the matrix of F, on TyE, the result follows. O

A Weil number (with respect to ¢) of weight w is an algebraic number with the property that
any complex embedding of it has absolute value ¢*/2.

Theorem 4 (Riemann hypothesis). The eigenvalues of Fy, on Ty E are Weil numbers of weight 1.

Proof. The characteristic polynomial of F, on TyE is T? — aT + q. The eigenvalues are the roots
of this polynomial, i.e., (a + \/a? —4q)/2. The Hasse bound shows that a®> — 4¢ < 0, and so
the absolute value of this algebraic number (or its complex conjugate) is /g. This completes the
proof. O
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The zeta function of a variety X/F, is defined by

Zx(T) = exp (Z #X(Fq)j:> .

Theorem 5 (Rationality of the zeta function). We have

1 —aT + qT?

Ze@) = T - g1y

Proof. The above results show that
#EFy)=q" +1—tr(Fypr | TLE).

Let a and 3 be the eigenvalues of Iy, on Ty E. Since Fyr is just Fy, the eigenvalues of Fyr on Tj(E)
are o and 8". We thus see that

#E(Fy)=q +1—a" —f".

‘We now have

[ee]
TT'

Z#E(qu)7 = —log(1 —T) —log(1l — ¢T') +log(1 — aT) + log(1 — 5T,

r=1
e (1 aT)(1 - BT)

p— a p—
Zp(T) =
PO =y

from which the result easily follows. O

Corollary 6. #E(F,) is determined, for any r, from #E(F).

Suppose that f: Ey — Ep is an isogeny. Then f induces a map Ty(E;) — T;(E2) which
commutes with Frobenius. Since the kernel of f is finite, the map it induces on Tate modules has
finite index image; in particular, it induces an isomorphism after tensoring with Q. It follows that
the eigenvalues of Frobenius on the two Tate modules agree, and so:

Theorem 7. If £y and Ey are isogenous then #E1(F,) = #E>(F,).

In fact, the converse to this theorem is also true, as shown by Tate.

1.2 Ordinary and supersingular curves

Let E be an elliptic curve over a field k of characteristic p. Then the map [p]: E — FE is not
separable and has degree p?. It follows that the separable degree of [p] is either p or 1. In the
first case, E is called ordinary, and in the second case, supersingular. The following result follows
immediately from the definitions, and earlier results:

Proposition 8. If E is ordinary then E[p|(k) & Z/pZ. If E is supersingular then E[p|(k) = 0.

We will revisit the ordinary/supesingular dichotomy after discussing group schemes. For now,
we prove just one more result.

Proposition 9. If E is supersingular then j(E) € F .



Proof. Suppose E is supersingular. Then [p] is completely inseparable, and thus factors as £ —
E®) E, where the first map is the Frobenius Fj2 and the second map is an isomorphism (since

it has degree 1). Since j(E®)) is equal to F2(j(E)) and j is an isomorphism invariant, we see
that j(E) = F,2(j(F)), from which the result follows. O

Corollary 10. Assume k algebraically closed. Then there are only finitely many supersingular
elliptic curves over k, and they can all be defined over F .

Proof. An elliptic curve over an algebraically closed field descends to the field of its j-invariant,
which gives the final statement. The finiteness statement follows immediately from this. O

2 Abelian varieties

A good reference for this section is the first chapter of Mumford’s “Abelian varieties” (MR0282985).

2.1 Definition and relation to elliptic curves

Definition 11. An abelian variety is a complete connected group variety (over some field). O
Example 12. An elliptic curve is a one-dimensional abelian variety.
Proposition 13. Fvery one-dimensional abelian variety is an elliptic curve.

Proof. Let A be a one-dimensional abelian variety. We must show that A has genus 1. Pick a
non-zero cotangent vector to A at the identity. The group law on A allows us to translate this
vector uniquely to any other point, and so we can find a nowhere vanishing holomorphic 1-form on
A. This provides an isomorphism QY% = Oy, and so H(4, Q) is one-dimensional. O

For the rest of this lecture we work over the complex numbers.

2.2 Compact complex Lie groups

Let A be an abelian variety. Then A(C) is a connected compact complex Lie group. We begin
by investigating such groups. Thus let X be such a group. Define V to be the tangent space to
X at the identity (the Lie algebra). Let g = dim(X). Recall that there is a holomorphic map
exp: V — X. We have the following results:

e X is commutative. Reason: the map Ad: X — End(V) is holomorphic, and therefore con-
stant, since X is compact and End(V) is a vector space. Since Ad assumes the value 1,
this is the only value it assumes. It follows that X acts trivially on End(V'), and so V is a
commutative Lie algebra. The result follows.

e exp is a homomorphism. Reason: this follows from commutativity.

e exp is surjective. Reason: the image of exp contains an open subset of X, since exp is a
local homeomorphism. The image of exp is also a subgroup of X. Thus the image is an open
subgroup U. The quotient X /U is discrete, since U is open, and connected, since X is, and
is therefore a point. Thus X =U.

e M = ker(exp) is a lattice in V, and thus isomorphic to Z29. Reason: since exp is a local
homeomorphism, M is discrete. Since X = V/M is compact, M is cocompact.



e X is a torus, i.e., isomorphic to a product of circles. Reason: clear from X = V/M.

e The n-torsion X [n] is isomorphic to (Z/nZ)?9. Reason: X [n] is isomorphic to £ M/M by the
exponential map.

e H!(X,Z) is naturally isomorphic to Hom(A'(M),Z). Reason: a simple application of the
Kiinneth formula shows that if 7" is any torus then cup product induces an isomorphism
N'(HY(T,Z)) — HY(T,Z). For our torus X, we have Hy(X,Z) = M, and the result follows.

2.3 Line bundles on complex tori

Let X = V/M, as above. Define Pic(X) (the Picard group of X) to be the set of isomorphism
classes of line bundles on X. This is a group under tensor product. Define Pic’(X) to be the
subgroup consisting of those bundles which are topologically trivial, and define NS(X) (the Néron—
Severi group) to be the quotient Pic(X)/ Pic®(X). We are now going to describe how to compute
these groups in terms of V and M.

A Riemann form on V' (with respect to M) is a Hermitian form H such that £ = Im H takes
integer values when restricted to M. (Note: some people include positive definite in their definition
of Riemann form; we do not.) Let R be the set of Riemann forms, which forms a group under
addition. Let P be the set of pairs (H, «), where H € R and a: M — U(1) is a function satisfying
alz +y) = @V a(z)a(y). (Here U(1) is the set of complex numbers of absolute value 1.) We
give P the structure of a group by (Hi,a1)(Hs,a2) = (Hy + Hz, a1a0). Let P° be the group of
homomorphisms M — U(1), regarded as the subgroup of P with H = 0.

Theorem 14 (Appell-Humbert). We have an isomorphism Pic(X) = P, which induces isomor-
phisms Pic®(X) = PY and NS(X) = R.

Some remarks on the theorem:

e Let m: V — X be the quotient map. If L is a line bundle on X then 7*(L) is the trivial line
bundle on V, since all line bundles on V' are trivial. Furthermore, 7*(L) is M-equivariant,
and L can be recovered as the quotient of 7*(L) by M. Thus to prove the theorem, it suffices
to understand the M-equivariant structures on the trivial line bundle over V.

e Let (H,«) € P. Define an action of M on V x C by
A (0,2) = (0 + A, a(X)eTTENFTHAN/2

This gives the trivial bundle on V' an M-equivariance. We let L(H, «) be the quotient, a line
bundle on X. The isomorphism P — Pic(X) is (H, «) — L(H, «). The main content of the
theorem is to show that the equivariances we just constructed are all of them.

e Remark. There is a bijection between Hermitian forms H on V and alternating real forms
E satisfying E(ixz,iy) = E(z,y). The correspondence takes H to £ = Im H, and E to
H(z,y) = E(iz,y) + iE(x,y). Thus a Riemann form H is determined by the associated
alternating pairing on M.

e Let (H,a) € P, and let E = Im H. Then E defines an element of Hom(A*(M),Z). But we
have previously identified this group with HQ(X ,Z). In fact, F, regarded as an element of
H2, is the Chern class c¢;(L(H,a)). We thus see that L(H,«) is topologically trivial if and
only if F = 0, which is the same as H = 0. This gives the isomorphic Pic?(X) = PO,



Let z € X and let t,: X — X be the translation-by-z map, i.e., t,(y) = x + y. Given a line
bundle L on X, we get a new line bundle ¢%(L) on X. We thus get an action of X on Pic(X), with
x acting by t>. The following proposition describes this action in terms of the Appell-Humbert
theorem.

Proposition 15. We have an isomorphism t:L(H,a) = L(H, o - 2™ E®:7)),
A few remarks:

e First, we note that A — ¢2™£(@) makes sense as a function on M, since E takes integral
values on M.

e The line bundle L(H,«) is translation invariant (i.e., isomorphic to its pullbacks by %) if
and only if H = 0. Indeed, it is clear that if H = 0 then L(H,«) is translation invariant.
Conversely, if L(H, «v) is translation invariant then e2miE@A) — 1 forallz € V and all A € M,
from which it easily follows that £ = 0, and so H = 0 as well. We can therefore characterize
Pic’(X) as the group of translation invariant line bundles on X.

e Let L be a line bundle on X. Then z — t%(L) ® L* defines a group homomorphism ¢r: X —
Pic’(X). Indeed, taking L = L(H, «), we see that ¢*(L) ® L* is equal to L(0, 2™ F@=)) 1t
follows that, in fact, ¢7, depends only on c¢;(L).

2.4 Sections of line bundles

A f#-function on V' with respect to (H,a) € P is a holomorphic function §: V' — C satisfying the

functional equation
9(1) + /\) _ a()\)ewH(v,)\)-i-ﬁH(/\,)\)/Q'

Given a section s of L(H,«) over X, we obtain a section 7*(s) of 7*(L(H, «)) over V. Identifying
7*(L(H, «)) with the trivial bundle, 7*(s) becomes a function on V', and the equivariance condition
is exactly the above functional equation. We therefore find:

Proposition 16. The space T'(X, L(H,a)) is canonically identified with the space of 6-functions
for (H, ).

Suppose that H is degenerate, and let V be its kernel (i.e., x € Vj if H(z,—) = 0). Then Vj
is also the kernel of E, and since E takes integral values on M, it follows that My = Vo N M is a
lattice in V. Let 6 be a f-function, and u a large element of V. Write u = A 4+ ¢ with A € My and
€ in some fundamental domain. Then for any v € V we have

6(v +u)| = |0(v + )|

since H(A,—) = 0. It follows that v — 6(v + u) is a bounded holomorphic function on Vp, and
therefore constant. Thus 6 factors through V/Vj. In particular, L(H, «) is not ample.

Now suppose that H(w,w) < 0 for some w € V. Let ¢t be a large complex number and write
tw = X\ + ¢, similar to the above. Then

|9(7J + tw)| _ |9(U + 6)|ewRe(H(v+e,)\))+7rH(>\,)\)/2'

The quantity H (A, A) is dominant, and very negative. We thus see that |§(v+tw)| — 0 as |t| — oo,
which implies f(v + tw) is 0 as a function of ¢. Thus #(v) = 0 for all v, and so 0 is the only
f-function.

We have thus shown that if H is not positive definite then L(H,«) is not ample. The converse
holds as well:



Theorem 17 (Lefschetz). The bundle L(H,«) is ample if and only if H is positive definite.
Some remarks:

e This theorem shows that X is a projective variety is and only if there exists a positive definite
Riemann form on V.

e In fact, one can show that if X is algebraic then it is necessarily projective, and so X is
algebraic if and only if it has a positive definite Riemann form. One can show that if H is
positive definite then L(H, a)®™ is very ample for all n > 3.

e Suppose F is the elliptic curve given by C/(1,7). Then H(z,y) = % is a positive
definite Riemann form on C. This recovers the fact that all one-dimensional complex tori are
algebraic.

e Most complex tori of higher dimension do not possess even a non-zero Riemann form, and so
most are not algebraic.

2.5 Maps of tori

A map of complex tori X — Y is a holomorphic group homomorphism. In fact, any holomorphic
map taking 0 to 0 is a group homomorphism. W write Hom(X,Y") for the group of maps. An
isogeny is a map of tori which is surjective and has finite kernel. The degree of the isogeny is the
cardinality of the kernel.

Example 18. Multiplication-by-n, denoted [n], is an isogeny of degree n29. O

2.6 The dual torus

Let X = V/M be a complex torus. Let V" be the vector space of conjugate-linear functions V — C,
and let MY C V" be the set of such functions f for which Im f(M) C Z. Then MV is a lattice in
V", and we define XV = V" /M". We call XV the dual torus of X. Note that we have a natural
isomorphism (XV)V = X.

Formation of the dual torus is clearly a functor: if f: X — Y is a map of tori then there is a
natural map fV: YV — XV. If f is an isogeny, then so is fV, and they have the same degree. Even
better:

Proposition 19. If f is an isogeny then ker(f) and ker(f) are canonically dual (in the sense of
finite abelian groups).

Proof. Write X = Vi/M; and Y = V5 /My, and let g: Vi — V5 be the linear map inducing. Then
ker(f) = g~ 1(Ms)/M, while ker(fV) = (g*)"1(MY)/My. If x € ker(f) and y € ker(fY) then
(g(z),y) is a rational number (since g(z) € Ms and y is in a lattice containing My with finite
index), and is well-defined up to integers. We thus have a pairing ker(f) x ker(f¥) — Q/Z with
n = deg(f), which puts the two groups in duality. O

Applying this in the case where X =Y and f = [n], we see that X [n] and X V[n] are in duality.
This gives us a canonical pairing X [n] x XV[n] — Z/nZ = p,,, which is called the Weil pairing.

Proposition 20. We have a natural isomorphism of groups XV = PicO(X).

Proof. The map V' — P° which takes f € V" to the map X — e2™Im(f(V) ig easily seen to be a
surjective homomorphism with kernel MV, It thus descends to an isomorphism XV — Pic®(X). O



Let H be a Riemann form on V. Then v — H(V, —) defines an isomorphism of complex vector
spaces V — V", and carries M into MV. It thus defines a map ¢5: X — XV of complex tori. This
map is an isogeny if and only if H is non-degenerate. Identifying XV with Pic®(X), ¢ coincides
with ¢, where L = L(H, «) for any a. A polarization of X is a map of the form ¢z (or ¢r) with
H positive-definite (or L ample). A principal polarization is a polarization of degree 1. We thus
see that X admits a polarization if and only if it is algebraic.



