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Lecture 4: Abelian varieties (algebraic theory)

This lecture covers the basic theory of abelian varieties over arbitrary fields. I begin with the
basic results such as commutativity and the structure of torsion. Then I discuss the dual abelian
variety. Next I prove the weak Mordell-Weil theorem, as the same ideas will be important for us
later on. Last is Poincaré irreducibility, and its interpretation in terms of the isogeny category.

A good reference for today is Mumford’s “Abelian varieties” (MR282985) or Milne’s notes.

1 General facts about abelian varieties

Fix a field k. Many of the results about abelian varieties over C continue to hold over k. However,
the proofs are quite different and more complicated. We give some indications as to how the theory
is developed, but omit most of the arguments.

1.1 Commutativity

We begin by explaining the most basic fact: commutativity. One can establish this using an
argument similar to the one we used in the complex case. We present a different argument here,
which provides a more general result. It is based on the following general fact:

Theorem 1 (Rigidty Lemma). Let X be a complete variety, let Y and Z be arbitrary varieties,
and let f: X XY — Z be a map of varieties. Suppose there exists xg € X and yg € Y such that
the restriction of f to each of X x {yo} and {xo} XY is constant. Then f is constant.

Corollary 2. Let X and Y be abelian varieties and let f: X — Y be any map of varieties such
that f(0) = 0. Then f is a morphism of abelian varieties, i.e., it respects the group structure.

Proof. Consider the map h: X x X — Y given by (z,y) — f(z+y)— f(z) — f(y). Then h(z,0) =
h(0,z) =0 for all z € X, and so by the Rigidity Lemma h = 0, i.e., f is a homomorphism. 1

Corollary 3. An abelian variety is commutative.

Proof. The map x — —z takes 0 to 0 and is therefore a homomorphism, which implies commuta-
tivity. O
1.2 Theorem of the cube

Theorem 4 (Theorem of the cube). Let X, Y, and Z be varieties, with X and Y complete, and
letxg e X, yo €Y, and zg € Z be points. Let L be a line bundle on X XY X Z, and suppose the
restrictions of L to each of X XY x {20}, X x {yo} X Z, and {xo} XY X Z are trivial. Then L is
trivial.

Remark 5. This can be thought of as a version of the rigidity lemma for maps to the stack
BG,,. O

Corollary 6. Let A be an abelian variety. Let p;: A x A x A — A denote the projection map, and
let pi; = pi +pj and pi123 = p1 +p2 + p3. Let L be a line bundle on A. Then the line bundle

PiosL @ pioL ' @ pis LT @ pis L @ piL @ psL ® piL

on A x A x A is trivial.
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Proof. This follows immediately from the theorem of the cube. For example, if we restrict to
A x A x {0} then pjosL = pioL, pisL = piL, and p5L = 1, so all factors cancel. O

Corollary 7. Let A be an abelian variety, let X be any variety, let f,g,h: X — A be maps, and
let L be a line bundle on A. Then the line bundle

(f+g+h)'Le(f+9)' L' o(f+h)'L '@ (g+h)'L @ ff Lo ¢*L @ h*L
on X is trivial.

Proof. This follows from the previous corollary by considering the map X — A x A x A given by
(f, 9, h). O

1.3 Structure of torsion
Proposition 8. Let L be a line bundle on an abelian variety A. Then
[n]*L _ L(n2+n)/2 Q [_1]*L(n27n)/2'

In particular, if L is symmetric ([—1]*L = L) then [n)]*L = L™, while if L is anti-symmetric
(I-1*L = L™') then [n]*L = L"™.

Proof. Applying Corollary 7 to the maps [n], [1], and [—1], we find
L+ 1] L ' @nh-1]"L '@ n*L® L [-1]*L
is trivial. In other words,
n+1"L=[n]"L*®[n—1]"L™' ® L ® [-1]*L.
The result now follows by induction. O

Proposition 9. The map [n] is an isogeny, i.e., it is surjective with finite kernel.

Proof. One can show that abelian varieties are projective. Let L be an ample line bundle on A.
Replacing L by L®[—1]*L, we can assume L is symmetric. Since [n]*L = L™ it is ample. However,
the restriction of this to the n-torsion is obviously trivial. Since the n-torsion is a complete variety
on which the trivial bundle is ample, it must be finite. This implies that [n] is surjective, by
reasoning with dimension. O

Proposition 10. The degree of [n] is n?9.

Proof. Let f: X — Y be a finite map of complete varieties of degree d. If Dy, ..., D, are divisors
on Y, where n = dim(X) = dim(Y’), then there is an equality of intersection numbers:

(f*le*Dn) :d(Dl"‘Dn)-

Now, let D be an ample divisor such that [—1]*D is linearly equivalent to D (e.g., the divisor
associated to the line bundle used above). Then [n]*D is linearly equivalent to n?>D. We thus find

deg([n])(D--- D) = ((n*D)--- (n*D)) = n*(D--- D).

Since D is ample, (D --- D) # 0, and thus deg([n]) = n?9. O



One can show that [n]: A — A induces multiplication by n on the tangent space. This shows
that [n] is separable if and only if n is prime to the characteristic. Combined with the above (and
the usual induction argument), we see that:

Corollary 11. If n is prime to the characteristic, then An](k) is isomorphic to (Z/nZ)%9.
Corollary 12. If ¢ is a prime different from the characteristic then Ty A is isomorphic to Z?g.

Since [p] is not separable, A[p](k) must have fewer than p?9 points. In fact, we when we study
group schemes we will see that it can have at most pJ points.

1.4 Theorem of the square

Theorem 13 (Theorem of the square). Let L be a line bundle on an abelian variety A, and let x
and y be two points of A. Then

iy L®L=tLatL.

Here t, denotes translation by x.
Proof. Apply the f, g, h proposition with f = x (constant map), g =y, and h = id. O

Define Pic(A) to be the set of isomorphism classes of line bundles on A. For a line bundle L,
let ¢r: A(k) — Pic(A) be the map ¢r(x) = t:L ® L~'. The theorem of the square exactly states
that ¢y is a group homomorphism.

2 The dual variety

Over the complex numbers, we can write an abelian variety A as V//M, where V is a complex vector
space and M is lattice. We defined the dual abelian variety AY as V" /M. We would like to be
able to define the dual variety over any field, but this definition obviously does not carry over. The
key idea is to reinterpret AV in terms of line bundles.

Recall that over C we showed that the set AY was canonically in bijection with the set Pic?(A).
Furthermore, although our definition of Pic’(A) was originally topological (and does not generalize
to other fields), we characterized Pic’(A) as the translation invariant line bundles (which does
generalize to other fields). We therefore have a possible method of defining the dual.

2.1 Definition of the dual

Let k be an arbitrary field, and let A be an abelian variety over k. We defined Pic(A) above to
be the set of isomorphism classes of line bundles on A. We now define Pic’(A) to be the subgroup
consisting of those line bundles L which are translation invariant, i.e., which satisfy ¢¥(L) = L for
all x € A. Motivated by the complex case, we want to define A" to be an abelian variety with
point-set Pic’(A). However, it is not good enough to just define the points of a variety over a field:
we must define its functor of points.

For a variety T, let F(T') be the of isomorphism classes of line bundles L on A x T satisfying
the following two conditions: (a) for all ¢ € T, the restriction of L to A x {t} belongs to Pic’(A);
and (b) the restriction of L to {0} x T is trivial. Thus F(k) = Pic’(A4). We define the dual abelian
variety AV to be the variety that represents F, if it exists. If it does exist, then it automatically
comes with a universal bundle P on A x AV, which is called the Poincaré bundle.



2.2 Construction of the dual

Let L be an ample bundle on A. We then have the map ¢,: A — Pic’(A4). (The theorem of the
square implies the image is in Pico.) Over the complex numbers, we saw that this map was an
isogeny of tori. In general, one can prove the it is surjective, and has finite kernel K (L). In fact, one
can give K (L) a natural scheme structure. This suggests that AV should be the quotient A/K (L),
and one can show that this is indeed the case.

2.3 Another approach to the dual

Let L be in Pic’(A). Then, by definition, t(L) and L are isomorphic for all z € A. Choose an
isomorphism ¢,. Then ¢yt;(¢.) and ¢4y are two isomorphisms ¢; (L) — L, and thus differ by
an element «, , of Aut(L) = Gy,. It is obvious that « is a 2-cocycle of A with coefficients in G,
and thus defines a central extension G(L) of A by Gy,. In fact, G(L) is a commutative group.

Here is a different construction of G(L). One can show that L being translation invariant is
equivalent to pjL ® p5L being isomorphic to m*L, where m is the multiplication map A x A —
A and p; are the projection maps. The fiber at (z,y) of this isomorphism is an identification
L, ® Ly — Lyy,. In other words, there is a natural map L x L — L (identifying L with its total
space) over the multiplication map on A. The group G(L) is then just L minus its zero section,
with this multiplication.

We have thus constructed a map G: Pic®(A) — Ext!(4,G,,), where Ext! is taken in the
category of commutative group varieties. Serre showed (MR0103191, Chapter VII, Section 3) that
this map is an isomorphism. Forming Ext! in the category of fppf sheaves allows one to recover
the functor of points of AV.

3 The Mordell-Weil theorem

Theorem 14 (Mordell-Weil). Let A be an abelian variety over the number field K. Then A(K)
is a finitely generated abelian group.

The proof of this theorem usually proceeds in two steps: first, one shows that A(K)/nA(K)
is a finite group (the so-called weak Mordell-Weil theorem), and then one uses height functions
to deduce the theorem. We will only discuss the proof of the first step. A complete proof, in the
case of elliptic curves, is given in Chapter VII of Silverman’s “The arithmetic of elliptic curves”
(MR0817210).

Consider the exact sequence

0— An](K) - A(K) & A(K) — 0.
Taking Galois cohomology, one obtains an exact sequence
0 — A(K)/nA(K) — H(Gk, An)(K)) — H (Gk, A(K))[n] — 0.

This is called the Kummer sequence, and is very important. To show that A(K)/nA(K) is finite,
it suffices to show that the middle cohomology group is finite. This is not quite true; however, one
can show that the image of the first map only hits classes which are unramified outside a fixed
finite set of places S, and so it’s enough to establish finiteness for such classes, which is true. (The
set S can be taken to be the set of places of bad reduction for A, together with those places above



Let L/K be a finite Galois extension containing all the n-torsion of A, and enlarge S so that
L/K is unramified outside S. Then one has the inflation-restriction sequence:

0 — HY(Gal(L/K), A[n)(K)) — H(Gk.s, A[n](K)) — H (G5, A[n](K)),

and so to prove finiteness of the middle group it suffices to prove finiteness of the outer groups.
Finiteness of the group on the left comes for free, since Gal(L/K) and A[n](K) are both finite.
Since G s acts trivially on A[n](K), the right group is just Hom(Gyp s,Z/nZ)?9. Giving a map
Gr,s = Z/nZ is (almost) the same as giving a Z/nZ extension of L unramified outside of S. Since
there are only finitely many such extensions unramified, the finiteness result follows.

4 Structure of the isogeny category

4.1 Poincaré reducibility

Theorem 15 (Poincaré reducibility). Let A be an abelian variety, and let B be an abelian subva-
riety. Then there exists an abelian subvariety C such that B N C is finite and B x C — A is an
isogeny.

Proof. Choosing polarizations on A and A/B to identify them with their duals, the dual to the
quotient map A — A/B is a map A/B — A. We let C be its image. The properties are easy to
verify. O

We say that an abelian variety A is simple if the only abelian subvarieties are 0 and A.

Corollary 16. FEvery abelian variety is isogenous to a product of simple varieties.

4.2 The isogeny category

Define a category Isog as follows. The objects are abelian varieties. For two abelian varieties A
and B, we put Homygg(A, B) = Hom(A, B) ® Q. One can show that if f: A — B is an isogeny
then there exists an isogeny g: B — A such that gf = [n], for some n; it follows that %g is the
inverse to f in Isog. Thus isogenies become isomorphisms in Isog.

It is not difficult to see that Isog is in fact an abelian category. The simple objects of this
category are exactly the simple abelian varieties. Poincar’s theorem shows that Isog is semi-simple
as an abelian category.

From this formalism, and general facts about abelian varieties, we deduce two results:

e The decomposition (up to isogeny) into a product of simple abelian varieties is unique (up
to isogeny). (Reason: in any semi-simple abelian category, the decomposition into simples is
unique up to isomorphism.)

e If A is a simple abelian variety then End(A) ® Q is a division algebra over Q. (Reason: if A
is a simple object in an abelian category and End(A) contains a field k, then it is a division
algebra over k.)



