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Lecture 6: Group schemes 2

This is the second lecture on group schemes, and is divided into three sections. In the first, I
discuss Cartier duality and give the basic examples. In the second, I go deeper into the theory over
finite fields, giving the classification of height 1 group schemes, and using it to classify the simple
group schemes over an algebraically closed field. T also briefly discuss Dieudonn modules. In the
third section, I apply the theory of group schemes to the of study abelian varieties. First, I relate
abelian variety duality and Cartier duality. Then I characterize ordinary and supersingular elliptic
curves using their p-torison. Finally, I give a tight bound on the p-torsion of an abelian variety.

1 Cartier duality

Let G = Spec(A) be a finite commutative group scheme over the field k. Let A* be the k-linear
dual of A. Since the Hopf algebra axioms are completely symmetric with respect to reversing
arrows, A* is still a Hopf algebra, and, of course, both commutative and cocommutative. We let
G = Spec(A*), a finite commutative group scheme over k. We call GV the Cartier dual of G.
Obviously, G and G have the same order and the natural map (GY)Y — G is an isomorphism.

We now describe the functor of points of GV. Let R be a k-algebra. Giving a k-algebra
homomorphism A* — R is the same as giving an R-algebra homomorphism A} — R, where
(—)r = —® R. Taking R-linear duals, this is the same as giving a morphism R-coalgebras R — Ag
of R-coalgebras. This, in turn, is the same as giving an element x of Ar such that A(z) =z ®@ x
and n(z) = 1, where A is the comultiplication and 7 is the counit on Ag. (The bijection takes
a map R — Ap to the image of 1 € R. The condition on z is exactly the condition needed to
make the map one of coalgebras.) We note that one of the Hopf algebra axioms is m(id ® i)A = n,
and so zi(x) = 1, i.e., x is a unit of Az. But giving a unit of Ag is the same as giving a map
R[t,t'] — Ag, and the condition A(x) =  ® z exactly makes this map one of Hopf algebras! We
have thus shown:

Proposition 1. There is a natural bijection GY(R) = Hom(Gg, (Gn)r). Equivalently, G¥ =
Hom(G, G,,) as sheaves on the big fppf site.

In words: the R-points of GV are the characters of G defined over R.

Example 2. Suppose G = Z/rZ. Then A = Hiez/rz ke;, with multiplication e;e; = d;;e; and
comultiplication A(en) = >, ;_, €iej. Let e be the dual basis of A*. The element A(ey;) is the
linear functional A® A — A — k, where the first map is multiplication and the second is e} . Given
the formula for multiplication, we see that A(e};)(e; ® €5) is 1 if ¢ = j = n and 0 otherwise. Thus
A(ey,) = e, ® ey, The product efe] is the linear functional A — A ® A — k, where the first map
is comultiplication and the second is e; * ®ej. We thus see that (efe})(en) is 1 if i +j = n and
0 otherwise. Thus e;‘e; =e} 4 It follows that e; — t' defines an isomorphism of Hopf algebras
A* — k[t]/(t" —1). Thus (Z/rZ)V = p,. (This can be seen more conceptually using the description

of the functor of points of GV.) Of course, this gives p/ = Z/rZ as well. O

Example 3. Let’s now consider the case G = «a,, where k has characteristic p. So A = k[t]/(tP).
Let e; = t* for 0 < i < p. We have eiej = e;yj for i 4+ j < mn and e;e; = 0 for i + 5 > n. We have
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A(t)=t® 1+ 1®¢t. Since A is a ring homomorphism,

Alen)=(t@1+10t)" = Y (?)ti@wj.

i+j=n

Now, let e be the dual basis of A*. Then A(e})(e; ® e;) is equal to 1 if i + j = n and 0 otherwise.
Thus A(e}) = Ziﬂ-:n e; ®¢j. We have that (eje;)(en) is equal to (?) if n =i+ 7 and 0 otherwise;
thus eje; = (H;] ) er 4 ifi4+j < n, and 0 otherwise. It follows that e} — t/i! defines an isomorphism
of Hopf algebras A* — A. Thus a]\g/ = . O

We have already seen two fundamental types of finite commutative group schemes: the local
(i.e., connected) ones, and the étale ones. Cartier duality allows us to further refine these types
by considering the type of the dual as well. We thus have local-local, local—-étale, étale-local, and
étale—étale group schemes (the first refers to the type of G, the second to GY). Examples (in
characteristic p) of these are oy, pp, Z/pZ, and Z/lZ (for { # p). In characteristic 0, we only have
étale—étale. Over a perfect field, every finite group scheme canonically decomposes into a product
G X Gie X Gep X Gee, where Gy is local-local, etc.

2 Group schemes over finite fields

2.1 Frobenius and Verschiebung

Let G = Spec(A). We have already seen the Frobenius map Fj,: G — G®), though we have not
carefully defined it. Let o be the pth power map (on any ring of characteristic p), the so-called
absolute Frobenius. Then o(ax) = o(a)o(x) for o € k and z € A, and so 0: A — A is not a
homomorphism of k-algebras. Let A®) = k Qo A, e, a®@zr =1®aPz in A®)_ Then the map
A®) — A given by a ® & — aaP is a well-defined map of k-algebras; this is F,. We define Fy, for
q = p", by using ¢" in place of o.

Proposition 4. G is étale if and only if I, is an isomorphism, and connected if and only if Fy; = 0
for some q =p".

Proof. Suppose G = Spec(A) is connected. Then clearly F, = 0 on A for some A, since the maximal
ideal of A is nilpotent. If F), is an isomorphism on G then F), is an isomorphism on G° as well, and
so G° = 0, i.e., G is étale. Now, F, induces an isomorphism G(k) — G(9 (k). Thus if F, = 0 for
some ¢ then G(k) = 0, i.e., G°* = 0, and so G is connected.

The dual of the Frobenius map on GV is a map V,,: G®) — @G, called the Verschiebung map. It
is a homomorphism, and one can show F,V,, = V,F}, = [p]. Obviously, V), is an isomorphism if and
only if GV is étale and V, = 0 for some ¢ if and only if G¥ = 0. O

2.2 Classification in height 1

Let G = Spec(A) be a finite commutative connected group scheme over k, which we assume to have
characteristic p. Write L(G) for the Lie algebra of G, which is naturally the dual of the k-vector
space I/I%, where I is the maximal ideal of A.

We say that a derivation D: A — A is invariant if AD = (D®1)A, where A is comultiplication.
Given v € L(G), thought of as an element of (I/I?)*, let D, be the composition

A= ARA - ARI/I* — A



where the first map is A, the second is id ® 7, where 7 is projection onto I/I? (as discussed
previously), and the final map is id ® v. Then one easily verifies that v — D, is an isomorphism of
L(G) with the space of invariant derivations.

Let D be a derivation of A. Let D™ be the n-fold iterate of D on A. Since D™ (zy) is computed
using the binomial theorem, it follows that DP satisfies the Liebniz rule, and is therefore a derivation.
It’s easy to verify that if D is invariant then so is DP, and so D — DP induces a map L(G) — L(G)
which we denote by F. Note that F(av) = a’F(v) for a € k.

We define an F-module over k to be a k-vector space L equipped with an additive map F'
satisfying F'(av) = aPF(v) for a € k and v € V. Thus L(G) is an example of an F-module.

Example 5. Suppose G = a;, = Spec(k[t]/(t?)). One easily verifies that D = < is an invariant
differential and spans L(G). We have DP = 0 since DP(t) = 0 and ¢ generates. Thus L(G) = k,
with F' = 0. O

Example 6. Suppose G = 1, = Spec(k[t]/(t’ —1)). One easily verifies that D = t% is an invariant
differential and spans L(G). We have DP = D since DP(t) =t = D(t). Thus L(G) = k, with F
being the pth power map. 1

It is clear that G is not determined from L(G), for two reasons: (1) in the étale case, L(G) = 0;
and (2) a non-isomorphism of groups can induce an isomorphism on tangent spaces, e.g., the map
pp2 — pp. We say that G has height 1 if it is connected and killed by Frobenius. This hypothesis
eliminate the two obvious obstructions just mentioned. In fact:

Theorem 7. The functor G — L(G) is an equivalence between the category finite commutative
height 1 group schemes over k and the category of finite dimensional F-modules.

Proof. Let L be a finite dimensional F-module. Let A be the quotient of Sym(L) by the ideal
generated by 2P — F'(x) for x € L. Then A is obviously a finite dimensional k-algebra. One verifies
that z —» 2 ® 1+ 1 ® x for x € L descends to a comultiplication on A, and that A is naturally a
Hopf algebra. The inverse functor takes L to Spec(A*), the Cartier dual of Spec(A). For details,
see Mumfords “Abelian varieties” (MR0282985), section 14. O

2.3 Consequences of classification

Theorem 8. Suppose k is algebraically closed. Then L(cay,) and L(py) are the only simple objects
in the category of finite dimensional F-modules (up to isomorphism,).

Proof. Let L be an F-module. If there exists x € L non-zero such that F(x) = 0 then kx is a
non-trivial submodule of L isomorphic to L(cy). Now suppose F(z) # 0 for all  # 0; we must
show L contains L().

Let eq,...,e, be a basis of L. Identify an element x = > a;e; of L with the vector v = (a;).
Write F(e;) = >_; Cije; with Cjj € k, and let C be the matrix (Cj;). Then if  corresponds to the
vector v = (a;), we see that F(z) corresponds to the vector CvP, where v = (af). From this we
see that C'is invertible: indeed, if Cv = 0 then F(z) = 0, where z corresponds to the vector v!/?
(which exists since k is closed).

We thus see that F-fixed vectors of L correspond to solutions to the equation v» = C~'v. Let
R = klz]/ (2] =3 Ciglxj). Then F-fixed vectors exactly coincide with k-points of Spec(R). Note
that Q}% k= 0 and R has dimension p" over k. It follows that Spec(R) is finite étale over k, and thus

has exactly p” k-points, since k is closed. We have therefore shown that dimg, (L*=") = dim(L).
It is easy to see that the natural map LI=! ®F, k — L is injective (apply F' to a hypothetical
minimal linear dependence), which implies that L = L(p,)®". O



Theorem 9. Suppose k is algebraically closed. Then the simple finite commutative group schemes
over k are Z/VZ (¢ # p prime), Z/pZ, pp, and oy,.

Proof. A simple group scheme is either connected or étale. The simple étale group schemes are
obviously Z/¢Z and Z/pZ. A simple connected group scheme is killed by Frobenius, and therefore
of height 1, and therefore i, or a,. O

Corollary 10. Let G be a finite commutative group scheme of order n. Then [n] =0 on G. In
particular, for any x € G(R) we have nx = 0.

Proof. This can be verified over k. If it is true for the outer groups in a short exact sequence, then
it’s true for the middle group. It therefore suffices to verify the case of simple group schemes, which
follows easily from the classification. O

Remark 11. An F-isomodule is an F-module with F injective. Then the category of F-isomodules
is equivalent to the category of groups G such that Gy is isomorphic to p;, for some n. But, by
Cartier duality, this category is equivalent ot the category of groups G such that G is isomorphic
to (Z/pZ)™, which is the same to say that G is étale and killed by p. But we know that this category
is equivalent to the category of Fj-representations of G,. We find that we have an equivalence of
categories

{F-isomodules} = {F,-representations of G}}.

This equivalence can be described explicitly using the ”"kernel object” k°, which has a compatible
Galois action and F-module structure. Precisely, an F-isomodule M is taken to (M ® k*)F=! while
a Galois representation V' is taken to (V ® k*)“*. Fontaine generalized this to a description of the
category of Z,[Gj]-modules. O

2.4 Dieudonné theory

It would of course be desirable to remove the height 1 restriction in the above classification of
group schemes. This is exactly what Dieudonné theory does, assuming k is perfect. Let W = W (k)
be the Witt vectors of k. If k = F,, which is the most common case, W is the ring of integers
in the unramified extension of Q, with residue field k. The absolute Frobenius on % induces an
automorphism ¢ of W. A Dieudonné module is a W-module D equipped with two additive maps
F,V: D — D satisfying F(az) = ¢(a)z, V(az) = ¢! (a)z, and FV = VF = p. The main theorem
is then:

Theorem 12. Suppose k is perfect. The category of finite commutative group schemes over k of
p-power order is equivalent to the category of Dieudonné modules of finite length over W.

Write D(G) for the Dieudonné module associated to G. The functor D has several nice prop-
erties in addition to being an equivalence:

e D is an exact functor.
e The group G is killed by p™ if and only if D(G) is.
e The order of G is equal to p", where r is the length of D(G) as a W-module.

e GG is connected if and only if F' is nilpotent on D(G), and étale if and only if F' is an
isomorphism on D(G).



e D(GV) is naturally the dual of D(G), where the dual of a Dieudonné module M is the W-
module Homyy (M, K/W) with F and V defined by (Ff)(z) = ¢(f(Vz)) and (Vf)(x) =
¢ Y(f(Fz)). Here K is the field of fractions of W.

e If G has height 1 then D(G)Y = L(G) (and V = 0).

3 Applications to abelian varieties

3.1 Duality of abelian varieties revisited

We previously showed that if f: X — Y is an isogeny of complex tori then ker(f) and ker(f") are
naturally Pontryagin dual groups. We now generalize this to arbitrary fields:

Proposition 13. Let f: A — B be an isogeny of abelian varieties. Then ker(fY) is naturally
Cartier dual to ker(f)".

Proof. Put G = ker(f). Applying Hom(—, G,,) to the short exact sequence of fppf sheaves

0—-G—A—B—0,
we obtain a long exact sequence
0 — Hom(B, G,,) — Hom(A4, G,,) — Hom(G, G,,) — Ext (B, G,,) — Ext (A4, G,,).

There are no maps from an abelian variety to Gy, (since abelian varieties are proper and Gy, is
affine), so the first two groups vanish. We’ve seen that Hom(—, G,,) is Cartier duality for finite
commutative group schemes and Ext!(—, G,,) is duality for abelian varieties. Thus GV = ker(fV).
A more elementary proof is given in section 15 of Mumfords “Abelian varieties” (MR0282985). [J

Corollary 14. Let A be an abelian variety. Then A[n] and AV[n] are Cartier dual. In particular,
there is a canonical pairing Aln] x AV[n| — w,, the Weil pairing.

3.2 The p-torsion of an elliptic curve

Let E be an elliptic curve over k, which we assume to be algebraically closed of characteristic p.
Then G = El[p] is a finite commutative group scheme over k of order p?. We know a lot about such
group schemes, so it’s reasonable to think we could describe G fairly precisely.

We know two things right off the bat. First, G is not étale. And second, since F is self-dual (as
an abelian variety), G is self-dual (in the sense of Cartier duality).

First suppose that E is ordinary. Then G(k) # 0, and so G®* is non-zero. Thus G = G° x G**,
and both factors have order p. By the classification of étale groups, G** = Z/pZ. Since G is
self-dual, G° is necessarily the dual of G, so G° = p,. We thus find G = p, x Z/pZ.

Now suppose that FE is supersingular. Then G(k) = 0, and so G = 0. It follows that G is
local, and thus local-local since it is self-dual. Since the only simple local-local group is oy, we
must have an extension of the form

0—=ap—G—a,—0.

This extension cannot be split, for then G = «;, ® o, which has a two-dimensional tangent space,
but the tangent space of G agrees with that of E, and has dimension 1. We also cannot have
G = a2, since this group is not self-dual (it has V' = 0 but F # 0); of course, we cannot have



G= a;/Q either. In fact, up to isomorphism, there are only four self-extensions of a,, (as can easily
be seen using Dieudonné theory), and G is the one we haven’t named! One can describe G as the
sum of a,2 and its dual in Extl(ap, oy, and one can also explicitly describe the Dieudonné module

D(G).

3.3 The p-torsion of an abelian variety

Let A be an abelian variety over k, assumed to be of characteristic p. Write A[p] = G1 @ G2 ® G
where (7 is étale, G5 is local—étale, and (3 is local-local. Write #G1 = p", #G2 = p®, and
#G3 =pl.

Proposition 15. The numbers r, s, and t are isogeny invariant.

Proof. Decompose A[p"] as G1,,®G2,® 3, as above. Note that A[p™] is a successive extension of
A[p]’s; it follows that G; p, is a successive extension of G;’s. In particular, #G1 , = p™", #G2, = p"*,
and #Gs, = p™.

Now suppose that A — A’ is an isogeny of degree d. Then, in the obvious notation, the kernel
of Gy — Gll,n has order at most d. Clearly, for n > 0, this is only possible if » < r’. Since
“isogenous” is an equivalence relation, there exists an isogeny A’ — A, and so v’ < r as well. Thus
r = r’. The equality of the other invariants is similar. O

Proposition 16. We have r = s and t = 2g — 2r, where g = dim(A).

Proof. By duality, we have 7(A) = s(AY). But A and AV are isogenous (via a polarization), and
so r = s. The formula for ¢ follows, since A[p] has order p9. O

Corollary 17. We have Alp|(k) = (Z/pZ)" with r < g.

Proof. Since r = s, we have 2r =7+ s < 2g, and so r < g. O

3.4 The Dieudonné module as a p-adic Tate module

Let A be an abelian variety of dimension g over k, a perfect field of characteristic p. Then T),(A),
the p-adic Tate module of A, has rank at most g, and could even be 0; it is therefore very much
unlike the f-adic Tate modules of A. Define the Dieudonné module of A, denoted D(A), to be the
inverse limit of those of the A[p™]. Then D(A) is a free W-module of rank 2g equipped with a
semi-linear map F', and thus looks more like the ¢-adic Tate module. (Note: V is not needed since
VF =p.)

Now suppose k = F, with ¢ = p". Let F' = F". Then F’ is a W-linear automorphism of D(A).
This looks even more like the /-adic Tate module! In fact, the analogy is very good: the eigenvalues
of I’ are the same as the eigenvalues of Frobenius on the f-adic Tate module.



