




Lecture 9: Néron models

This lecture is an exposition on Néron models. I begin by discussing quasi-finite étale group
schemes over DVRs: these are the sorts of things that occur as the prime-to-p torsion of Néron
models. Then, before going to the general theory, I discuss Néron models of elliptic curves, especially
their relationship to Weierstrass and minimal regular models. I do two simple and explicit examples.
Finally, I introduce Néron models of general abelian varieties. Two applications are discussed:
the NéronOggShafarevich criterion, and Grothendiecks generalization thereof; and the semi-stable
reduction theorem.

1 Quasi-finite étale group schemes

At the end of the last lecture, we considered the group scheme obtained by taking the n torsion
in the smooth locus of a minimal Weierstrass model for an elliptic curve. This group scheme is
typically not finite over the base. However, it is quasi-finite: all its fibers have finitely many points.
We now study such group schemes in the étale case.

Let R be a henselian DVR, and keep our usual notation (K, k, etc). Let G be a quasi-finite
étale group scheme over R (assumed to be of finite presentation and commutative). Let M = G(K)
be the Galois module corresponding to GK , and let M0 = G(k) be the one corresponding to Gk.
Since G is étale, the natural map G(R) ! G(k) is an isomorphism, and so we can regard M0 as a
submodule of M . It is obviously stable under the Galois action and fixed by inertia.

Theorem 1. The functor G 7! (M,M0) is an equivalence of categories.

Some comments:

• Let G correspond to (M,M0) and let H be a subgroup corresponding to (N,N0). Then H
is closed in G if and only if N0 = M0 \ N . In this case, G/H is an étale quasi-finite group
scheme, and it corresponds to (M/N,M0/N0).

• Let G be a finite group scheme over K, corresponding to the Galois module M . Then G
admits a maximal extension to an étale quasi-finite group over R, by taking M0 = M IK . It
also admits a minimal such extension, by taking M0 = 0; we call this the extension by zero.

• Let G correspond to (M,M0), and let H be the closed subgroup corresponding to (M0,M0).
Then H is the maximal closed subgroup of G which is finite over R. Note that Hk = Gk.

• Suppose G is a quasi-finite flat group scheme over R which is killed by n, and n is invertible
on R. Then GK and Gk are both étale, and this implies that G itself is étale. In particular, if
E is some smooth commutative group variety over R and E [n] is quasi-finite, then it is étale
as well.

• Remark. At the end of the previous lecture, we proved that if E is an elliptic curve with semi-
stable reduction, then IK fixes a vector in T`(E). Let us re-explain the argument with the
above theory in hand. Let G be the `n-torsion in the smooth part of the minimal Weiestrass
model. Then this is a quasi-finite étale group scheme over R. Let H ⇢ G be the maximal
finite subgroup. Then Hk = Gk, and so H(k) contains a point of order `n (since it is the `n-
torsion in either an elliptic curve or Gm). Since H is étale over R, the map H(Kun) ! H(k)
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is an isomorphism. Of course, H(Kun) ⇢ E[`n](Kun), so this shows that E contains a point
of order `n defined over Kun.

2 Néron models of elliptic curves

A good reference for this section is Chapter IV of Silverman’s book “Advanced topics in the
arithmetic of elliptic curves” (MR1312368).

2.1 Motiviation

Let E/K be an elliptic curve and let W/R be its minimal Weierstrass model. Since W is proper
over R, we have W(R) = W(K) = E(K). However, W is typically singular. Its smooth locus Wsm

is a group scheme over R. Typically, it is not proper, and not all K-points of E extend to Wsm.
Those that do are the subgroup E0(K), which has finite index in E(K).

The Néron model is an extension E of E over R which combines the desirable properties of
W and Wsm: it is a smooth group scheme and all K-points extend to R-points. The identity
component of E is Wsm, while the component group of Ek (at least for k algebraically closed) is
E(K)/E0(K). So all the points of E(K) extend to points of E(R), and E0(K) is the subgroup of
points which extend to the identity component of E .

2.2 Minimal regular models and Neron models

Let C/K be a curve. A regular model for C is a proper flat scheme C over R which is regular and
whose generic fiber is C. A regular model C is minimal if for any other regular model C0, there
exists a map of schemes C0 ! C extending the identity on the generic fiber. The main theorem is
that minimal regular models exist and are canonically unique. One can find a regular model for C
by starting with any model and repeatedly blowing-up and normalizing. From there, one can find
a minimal regular model by blowing-down certain divisors in the special fiber.

Let E/K be an elliptic curve and let C/R be its minimal regular model. The Néron model of
E is then the smooth locus in C. (This can be taken as a definition, though a better definition is
given below.)

2.3 Example 1

Consider the curve y2 = x3 + p over K = Qp. The same equation defines the minimal Weierstrass
model W over R = Zp. Clearly, W is smooth everywhere except for the point P = (0, 0) in the
special fiber.

We claim that P is regular. To see this, let A = R[x, y]/(y2 = x3 + p) be the ring of natural
a�ne chart containing P , so that P corresponds to the maximal ideal m = (x, y, p). The ideal m2

is generated by x2, xy, y2, px, py, p2. But note that y2 = x3 + p, and x3 2 m, so we may as well
replace the generator y2 with p, which means the generators px, py, and p2 are unnecessary. Thus
m2 = (x2, xy, p). The quotient m/m2 is has for a basis the images of x and y, and is thus two
dimensional over the residue field A/m. Since A has Krull dimension 2, this establishes regularity.

It follows thatW is a regular model for E, which is necessarily minimal since there are no divisors
in the special fiber to blow-down. The Néron model E is the smooth locus of W, i.e., W \ {P}. In
particular, the special fiber Ek is connected and isomorphic to Ga. We have E(K) = E0(K) in this
case.
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2.4 Example 2

Now consider the curve E defined by y2 = x3 + p2. Again, this equation defines the minimal
Weierstrass model W over R and P = (0, 0) in the special fiber is the unique singular point.

In this case, P is not regular. Let A = R[x, y]/(y2 = x3 + p2) and m = (x, y, p), similar to
before. The generators of m2 are similar to before. The di↵erence is that one can no longer use the
defining equation to find p in m2; in fact, the equation shows that y2 is not needed as a generator
of m2. Thus m2 = (x2, xy, px, py, p2). The images of x, y, and p in m/m2 are linearly independent
(and in fact a basis), so m/m2 is 3 dimensional, and so P is not regular.

To find the minimal regular model of E, we blow up at the point P . We’ll only do the com-
putations in the a�ne chart Spec(A). The blow-up algebra B is the subring of A[t] generated by
tx, ty, and tp. This is considered as a graded ring by giving t degree 1. The blow-up is Proj(B).
Let B1 be the degree 0 subring of B[1/tx], and define B2 and B2 similarly but with ty and tp. Let
Ui = Spec(Bi). Then Proj(B) is covered by the Ui, so we first study them.

The ring B1 can be presented as the quotient of R[x, y/x, p/x] by the equations x(p/x) = p and
(y/x)2 = x + (p/x)2. (One should think of y/x and p/x as indeterminates.) The special fiber is
therefore defined by the equations x(p/x) = 0 and (y/x)2 = x + (p/x)2. This is a union of three
lines: when x = 0 we get (y/x) = ±(p/x) and when (p/x) = 0 we get x = (y/x)2. The three lines
intersect at the point x = (p/x) = (y/x) = 0.

The ring B2 can be presented as the quotient of R[y, x/y, p/y] by the equations y(p/y) = p and
1 = y(x/y)3 + (p/y)2. Its special fiber is defined by y(p/y) = 0 and 1 = y(x/y)3 + (p/y)2. This is
also a union of three lines: when y = 0 we get (p/y) = ±1 and when (p/y) = 0 we get y = (x/y)�3.
Note that these lines do not intersect, since (p/y) is constant on each line of a di↵erent value. The
two lines with y = 0 meet up with the two lines in U1 with x = 0. Since y/x can assume any
non-zero value in U1 and x/y can assume any non-zero value in U2, they glue to P

1’s. The third
line in U2 is missing two points, and is contained in the third line in U1.

Finally, the ring B3 can be presented as the quotient of R[x/p, y/p] by the equation (y/p)2 =
p(x/p)3 + 1. Its special fiber consists of two lines, defines by (x/p) = 0 and (y/p) = ±1. Thus U3

is contained in U1 [ U2.
We thus see that the special fiber of Proj(B) has three components, two P

1’s and one A

1, and
they are joined at a single point. However, Proj(B) is not the full blow-up of W at P , but only
one chart. The other chart adds the missing point to the A

1 in the special fiber.
This blow-up C is the minimal regular model for E. The Néron model E is obtained by deleting

the intersection point in the special fiber. Thus E� has three components, so its component group
is necessarily Z/3Z.

2.5 Classification of minimal regular models

If E has good reduction, then its minimal Weierstrass model is smooth, and coincides with its
minimal regular model and Néron model. In this case, the special fiber of the minimal regular
model is an elliptic curve.

In all other cases, the special fiber of the minimal regular model is made up of genus 0 curves,
though they may have singularities and non-reduced behavior. This data is combinatorial, since one
simply needs to record how many P

1’s there are, how they intersect, and what their multiplicities
are. It can be depicted as a sort of graph, with numbers on the edges to denote multiplicities. Néron
and Kodiara classified all the possible special fibers; the graphs that occur turn out to be closely
related to Dynkin diagrams. An important fact that follows from this classification is that, unless
E has split multiplicative reduction, the special fiber of its Neron model has at most 4 components.
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3 Néron models for abelian varieties

3.1 Definition and basic properties

It is not at all clear how to extend our discussion of elliptic curves to higher dimensional abelian
varieties: the theory of Weierstrass models relies on explicit equations, which are unavailable, while
the more abstract theory of minimal regular models is specific to curves. The key observation is
that the functor of points of the Néron model of an elliptic curve admits a nice description.

Theorem 2. Let E/K be an elliptic curve, and let E/R be its Néron model. Let X/R be any smooth

scheme, and let X = XK . Then the natural map HomR(X , E) ! HomK(X,E) is an isomorphism.

Given this description of E , it is clear how the definition can be extended to any scheme:

Definition 3. Let A/K be a smooth scheme. A Néron model for A is a smooth scheme A/R which
satisfies the Néron mapping property: the natural map HomR(X ,A) ! HomK(X,A) is a bijection,
for any smooth scheme X/R as above.

Some remarks:

• The definition of Néron model specifies its functor of points on smooth R-schemes. Since the
Néron model itself is required to be a smooth R-scheme, Yoneda’s lemma shows that Néron
models are canonically unique, when they exist.

• Although the definition applies to any smooth scheme A/K, we only consider the case where
A is an abelian variety.

• The main existence result is that the Néron model of an abelian variety exists.

• As a special case of the Néron mapping property, we see that the natural map A(R) ! A(K)
is a bijection, i.e., all K-points of A extend to R-points of A. Thus, from the perspective
of K-points, the Néron model behaves as if it were proper. This is not true for K 0-points if
K 0/K is a ramified extension!

• Formation of Néron models is compatible with passing to unramified extensions, but not to
ramified extensions, in general. Precisely, suppose K 0/K is a finite extension, let A be the
Néron model of A and let A0 be the Néron model of AK0 . Then there is a natural map
AR0 ! A0. If K 0/K is unramified this map is an isomorphism, but when K 0/K is ramified it
is typically not. In particular, the natural map A(R0) ! A(K 0) need not be an isomorphism.

3.2 Types of reduction

Let A/K be an abelian variety with Néron model A, and let A0 be the special fiber of A. Let A�
0

be its identity component. A theorem of Chevalley states that every smooth connected group is an
extension of an abelian variety by a smooth a�ne group. Thus there is an exact sequence

0 ! L ! A�
0 ! B ! 0,

where B is an abelian variety and L is a commutative smooth a�ne group. The group L contains
a maximal torus T such that the quotient U = L/T is unipotent (a product of Ga’s). In other
words, we can say that there is a canonical filtration

0 = F0 ⇢ F1 ⇢ F2 ⇢ F3 ⇢ F4 = A0
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where T = F1/F0 is a torus, U = F2/F1 is unipotent, B = F3/F2 is an abelian variety, and F4/F3

is finite étale (the component group). The dimensions of T , U , and B are important invariants of
A refining the trichotomy of multiplicative/additive/good reduction in the case of elliptic curves.

We say that A has good reduction if it extends to an abelian scheme over R. (An abelian
scheme is a smooth proper group scheme with geometrically connected fibers.) This is equivalent
to A0 (or just A�

0) being an abelian variety. If A has good reduction then A is the unique abelian
scheme extending it.

We say that A has semi-stable reduction if A0 has no unipotent part, i.e., A�
0 is an extension

of an abelian variety by a torus (what is called a semi-abelian variety).

3.3 Neron–Ogg–Shafarevich

Let ` be a prime di↵erent from the residue characteristic and T`(A) the `-adic Tate module of A,
a representation of GK .

Theorem 4. A has good reduction if and only if T`(A) is unramified.

Proof. The proof is the same as the elliptic curve case. We briefly recall the details. First, if A
has good reduction then it extends to an abelian scheme A, so A[`n] is a finite étale group scheme
over R, which implies that T`(A) is unramified. Conversely, suppose T`(A) is unramified. Then all
the `n-torsion of A is defined over Kun, and so A(Kun)[`n] has cardinality `2ng, where g = dim(A).
Since the reduction map A(Kun)[`n] ! A(k) is injective, we see that A(k)[`n] has cardinality at
least `2ng. Using the fact that Gm and Ga have too little `n-torsion, this implies that there can be
no toric or unipotent part of A0, and so A�

0 is an abelian variety, which implies good reduction.

There is an important generalization of this theorem, due to Grothendieck. We do not give the
proof.

Theorem 5. A has semi-stable reduction if and only if the action of IK on T`(A) is unipotent.

3.4 Semi-stable reduction theorem

Theorem 6. There exists a finite extension K 0/K such that AK0
has semi-stable reduction.

Proof. We assume K is a finite extension of Qp for simplicity. By Grothendieck’s extension of
Néron–Ogg–Shafarevich, it is enough to show that IK0 acts unipotently on T`(A) for some finite
K 0/K. In fact, we will show that this is true for any `-adic representation of GK !

Thus let V be a continuous `-adic representation of GK . Since the wild inertia subgroup of GK

is pro-p, its image in GL(V ) must be finite. Thus, passing to a finite extension, we can assume wild
inertia acts trivially. The quotient of GK by the wild inertia subgroup is topologically generated by
two elements, F (a lift of Frobenius) and ⌧ (a generator of tame inertia), which satisfy the single
relation F ⌧F�1 = ⌧ q. This equation shows that the transformations ⌧ and ⌧ q of V are conjugate.
Thus if ↵1, . . . ,↵n are the eigenvalues of ⌧ then ↵q

i = ↵�(i) for some permutation � 2 Sn. This

implies that ↵qn

i = ↵i for all i, i.e., the ↵i are roots of unity of order dividing qn � 1. Thus, by
passing to an extension of K with ramification index e = qn � 1 (which has the e↵ect of replacing
⌧ by ⌧ e), the action of ⌧ (and thus all of inertia) becomes unipotent.
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