




Lecture 10: Jacobians

This lecture is an exposition on Jacobians. I start with the analytic theory, where the Jacobian
is defined as the quotient of a vector space by a lattice. I then discuss the representability issues
of the functor of points over arbitrary fields. Following this, I briefly sketch Weil’s construction of
the Jacobian and say something about the relative situation.

1 Analytic theory

1.1 Hodge theory of curves

Let X be a (connected, smooth, projective) curve over the complex numbers of genus g. Let V be
the space of global holomorphic 1-forms on X, which is a complex vector space of dimension g. Let
H1

dR(X) be the first de Rham cohomology group of X, i.e., the space of smooth closed real 1-forms
modulo exact forms. Since every element of V is closed, we have a natural map V ! H1

dR(X)⌦RC.

Lemma 1. This map is injective.

Proof. Suppose ! 2 V is closed, and write ! = df . Then f is holomorphic: indeed, in local
coordinates, this expression implies that df has no dz, which is exactly the Cauchy–Riemann
equations. Thus f is a holomorphic function on all of X, and therefore constant, and so ! = 0.

Theorem 2 (Hodge decomposition). The map V � V ! H1
dR(X)⌦R C is an isomorphism.

Proof. Let J : T
x

! T
x

be the multiplication by i map on tangent spaces. For a complex 1-form !
on X, define !c by �i!J . Then (�)c induces an involution of H1

dR(X)⌦RC. Clearly, V lies in the
1 eigenspace of this operator, while V lies in the �1 eigenspace. Thus V \V = 0 in H1

dR(X)⌦RC,
and so the map in question is injective. Since both spaces have complex dimension 2g, it is also
surjective.

Proposition 3. Let p : H1
dR(X)⌦RC ! V be the projection map. Then p induces an isomorphism

of real vector spaces H1
dR(X) ! V .

Proof. Suppose ↵ is an element of H1
dR(X). Then in the decomposition ↵ = ! + ⌘ with !, ⌘ 2 V ,

we must have ! = ⌘, since ↵ = ↵. It follows that ! 7! ! + ! is the inverse to p.

Proposition 4. Let ↵,� 2 H1
dR(X). Let ! = p(↵) and ⌘ = p(�). Then

Z

X

↵ ^ � = 2Re

Z

X

! ^ ⌘

Proof. We have ↵ = ! + ! and � = ⌘ + ⌘, and so ↵ ^ � = ! ^ ⌘ + ! ^ ⌘ = 2Re(! ^ ⌘).

We define a Hermitian form H on V by

H(!, ⌘) = 2i

Z
! ^ ⌘.

The factor of i is required for the identity H(!, ⌘) = H(⌘,!). The above proposition says that for
↵,� 2 H1

dR(X), we have
R
X

↵ ^ � = Im(H(p(↵), p(�)).
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1.2 Definition of the Jacobian

Let L = H1(X,Z). Given � 2 L and ! 2 V , we can integrate ! over � and get a number. For fixed
�, this defines a linear map V ! C, and so we have a natural map i : L ! V ⇤.

Proposition 5. i(L) is a lattice in V ⇤
.

Proof. Let iR denote the induced map L⌦R ! V ⇤. The real dual of V ⇤ is natural isomorphic to V ,
where an element v 2 V induces a linear map V ⇤ ! R by taking the real value of the usual pairing.
The dual of iR is thus a real-linear map V ! L_ ⌦R. Identifying L_ ⌦R with H1

dR(X), this map
takes ! to !+!. Indeed, the image of ! is supposed to be a real 1-form ↵ such that Re

R
�

! =
R
�

↵
for any � 2 L, and it is clear that ↵ = ! + ! does the job. Thus iR is an isomorphism; indeed, it
is the inverse to p.

Definition 6. The Jacobian of X, denoted Jac(X), is the complex torus V ⇤/L.

We have a natural conjugate-linear isomorphism j : V ! V ⇤ given by j(!) = H(�,!). Define
a Hermitian form H⇤ on V ⇤ by H⇤(�, µ) = H(j�1(µ), j�1(�)); the order is switched so that H⇤ is
linear in its first slot.

Proposition 7. ImH⇤(i(�), i(�0)) = h�, �0i for any �, �0 2 L, where h, i is the intersection pairing

on L.

Proof. The two pairings ImH⇤ and h, i both induce real skew-symmetric pairings on L⌦R

⇤. These
can be transferred to the dual space, which is identified with H1

dR(X). The first is then given by
(↵,�) 7! ImH(p(↵), p(�)), while the second by (↵,�) 7! R

X

↵ ^ �. The equality of these two
pairings has already been established.

Corollary 8. Jac(X) is canonically a principally polarized abelian variety.

1.3 Basic properties

Some elementary properties of Jac(X):

• The tangent space to Jac(X) at the identity is canonically isomorphic to V ⇤ = H1(X,O) (the
identification here is Serre duality).

• Dually, we see that the cotangent space to Jac(X) at 0 is V . It follows that H0(Jac(X),⌦1) =
V = H0(X,⌦1).

• We have a natural isomorphism H1(Jac(X),Z) = H1(X,Z).

• Fix a point x 2 X. We then get a map f
x

: X ! Jac(X) as follows. For y 2 X, choose a path
⇢ from x to y in X. We then get an element of V ⇤ by integrating over ⇢. The choice of ⇢ is
not unique, but the di↵erence of any two choices lies in L, so the resulting elements of V ⇤ is
well-defined up to i(L). The map f

x

takes y to this element of V ⇤/i(L).

• One can show that f⇤
x

induces an isomorphism H0(Jac(X),⌦1) ! H0(X,⌦1).

We now give perhaps the most important property of Jac(X). Let Pic(X) denote the group
of isomorphic classes of line bundles on X, and let Pic0(X) be the subgroup consisting of those of
degree 0.

Proposition 9. We have a natural isomorphism Jac(X) ! Pic0(X).
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Proof. Consider the exponential sequence on X:

0 ! Z ! O ! O⇥ ! 0.

Taking cohomology, we obtain an exact sequence

0 ! H1(X,O)/H1(X,Z) ! H1(X,O⇥) ! H2(X,Z) ! 0.

Identifying H1(X,O) with V ⇤ by Serre duality, the group on the left is Jac(X). The group in the
middle is Pic(X). We have a natural identification H2(X,Z) = Z, under which the right map is
the degree map Pic(X) ! Z. Thus Jac(X) maps isomorphically to Pic0(X).

2 Algebraic theory

A good reference for this section is Chapter III of Milne’s notes on abelian varieties.

2.1 Attempt at a definition

The definition of the Jacobian in the complex case was inherently analytic, and does not carry
over to the algebraic case. However, we can use one of the results we proved about the Jacobian,
namely that its points parametrize degree 0 line bundles on X, to give a definition valid over any
field. This is similar to our previous discussion of the dual abelian variety.

From now on, we fix a field k, and let X/k be a curve. We want to give Pic0(X) an algebraic
structure. To do this, we must make sense of families of degree 0 line bundles on X over a base
scheme T . This is not hard to do: such a family is just a line bundle on X

T

= X ⇥ T , which
restricts to degree 0 in each fiber. Let F (T ) be the set of isomorphism classes of such bundles. One
might then hope that F is representable, and define the Jacobian in this manner.

2.2 First obstruction to representability

Unfortunately, F is not representable. There are two obstacles to representability. The first is that
line bundles on T cause problems. To see this, suppose F were represented by some variety J . Let
L be a line bundle on T , and write p : X

T

! T for the projection. The line bundle p⇤(L) on X
T

is trivial on each fiber, and therefore of degree 0 in fiber, and thus belongs to F (T ). There should
therefore be a map f : T ! J such that p⇤(L) is isomorphic to f⇤(L), where L is some universal
bundle on J . However, since p⇤(L) is trivial in each fiber, f must map all of T to the same point
(the one corresponding to the trivial bundle on X), and so f⇤(L) is trivial. But p⇤(L) need not be
trivial.

This problem can be fixed by simply killing all the bundles that come from T . Precisely, define
G(T ) to be the quotient of F (T ) by the subgroup p⇤(Pic(T )). Then the above paragraph shows
that we should work with G instead of F .

2.3 Second obstruction to representability

However, F su↵ers from another problem which prevents it, and G, from being representable: it is
not necessarily a sheaf. In fact, if k0/k is a Galois extension with group � then the natural map
F (k) ! F (k0)� need not be a bijection, which is a requirement for representability. (Note that F
and G have the same field-value points, so this fails for G as well.) Precisely, we have the following
picture:
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Proposition 10. Let k0/k be a Galois extension of group �. Then there is a natural exact sequence

0 ! Pic(X) ! Pic(X
k

0)� ! Br(k)

In particular, given L 2 Pic(X
k

0) there is an obstruction in Br(k) measuring the failure of L to

descend to X.

Proof. We first show that the left map is injective. In other words, if L and L0 are two line bundles
on X which are isomorphic over X

k

0 , then L and L0 are isomorphic. Let i be an isomorphism over
X

k

0 . For � 2 �, the map i� is also an isomorphism L ! L0, and thus di↵ers from i by an element
c
�

of Aut(L) = (k0)⇥. One easily sees that c satisfies the cocycle condition, and thus defines an
element of H1(�, (k0)⇥), which vanishes by Hilbert’s Theorem 90. Thus c is a coboundary, i.e., of the
form c

�

= (�↵)/↵ for some ↵ 2 (k0)⇥. One easily sees that ↵�1i is a Galois-invariant isomorphism
L ! L0 over X

k

0 , and thus descends to X.
We now construct an element of Br(k) measuring the obstruction of an element of Pic(X

k

0)� to
come form Pic(X). The basic reason such an obstruction exists is because an element of Pic(X

k

0)� is
a line bundle L onX

k

0 such that �⇤(L) is isomorphic to L for each � 2 �, but these isomorphisms are
not required to satisfy any sort of compatibilities, which is needed for descent. In fact, the failure of
the compatibilities defines a 2-cocycle which gives the Brauer obstruction. Suppose L 2 Pic(X

k

0)�,
and for each � 2 � choose an isomorphism i

�

: L ! �⇤(L). Then �⇤(i
⌧

) � i
�

and i
�⌧

are two
isomorphisms L ! (�⌧)⇤L, and thus di↵er by an element c

�,⌧

of Aut(L) = (k0)⇥. It is easy to see
that c satisfies the 2-cocycle condition, and thus defines an element of H2(Gal(k0/k), (k0)⇥) ⇢ Br(k).
If this 2-cocycle is a coboundary, then the choice of i’s can be modified to give descent data on L,
and L belongs to Pic(X). This completes the proof.

Example 11. Take X to be a curve which is isomorphic to P

1 over k0 but not over k, e.g., the
curve over k = R given by X2 + Y 2 = �Z2. Then Pic(X

k

0) is isomorphic to Z, and thus contains
Pic(X) with finite index, and so � acts trivially on Pic(X

k

0). But the bundle O(1) on X
k

0 does not
descend to X, as this would give an isomorphism X ! P

1 over k.

Remark 12. Suppose k is a finite extension of Q

p

and k0 is an algebraic closure of k. Then
Br(k) = Q/Z, and Lichtenbaum showed that the image of the the map Pic(X

k

0)� ! Br(k) is
N�1

Z/Z, where N is the gcd of the degrees of divisors on X. Thus Pic(k) = Pic(k0)� if and only
if X has a divisor of degree 1 defined over k.

Remark 13. We have not actually give an example where a line bundle of degree 0 fails to descend,
which is the case of interest (as F (k0) = Pic0(X

k

0)). I believe such an example exists if X is a genus
1 curve over a finite extension of Q

p

without a point.

2.4 The case where a rational point exists

In fact, the failure of G to satisfy descent only occurs when X has not k-rational points. To see
this, suppose X has a k-rational point x. Define G

x

(T ) to be the category of pairs (L, i) where
L is a fiberwise degree 0 line bundle on X

T

, and i is an isomorphism of L|{x}⇥T

with the trivial
bundle O

T

. Define G
x

(T ) to be the set of isomorphism classes in G
x

(T ). The key point is that
objects of G

x

(T ) are rigid: they have no automorphisms. This means that if an isomorphism class
is invariant, then it has canonical descent data. It follows that G

x

is a sheaf. On the other hand,
we have the following lemma:

Lemma 14. The natural map G
x

! G, given by forgetting i, is an isomorphism.
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Proof. If L and L0 belong to G
x

and L ⇠= L0 ⌦ p⇤(L00) for some line bundle on L00 then, restricting
to {x} ⇥ T , one sees that L00 is trivial, and so L ⇠= L0; this proves injectivity. As for surjectivity,
suppose L is a line bundle on X

T

and let L0 be its restriction to {x} ⇥ T . Then L ⌦ p⇤(L�1
0 ) is

naturally an element of G
x

mapping to L in G(T ).

We thus see that, when X has a k-point, G is a sheaf.

Theorem 15. Suppose X has a k-point. Then the sheaf G is representable. The representing

scheme is denoted Jac(X), and called the Jacobian of X.

If X does not have a point then G is not necessarily a sheaf, and thus not necessarily repre-
sentable. However, one can replace G with its sheafification, and this turns out to be representable.
Thus one can define the Jacobian of X even when X does not have a point.

2.5 Construction of the Jacobian

We now sketch the proof of the representability of G in the case that X has a k-rational point x.
Let X(r) be the rth symmetric power of X, i.e., the quotient of Xr by the action of the symmetric
group S

r

. Points on X(r) defined over k0 can be identified with e↵ective divisors on X
k

0 of degree
r. We will consider X(g), where g is the genus of X.

Let D and D0 be e↵ective divisors of degree g on X. The Riemann–Roch theorem then implies
that `(D + D0 � g[x]) � 1. By semi-continuity, the locus U ⇢ X(g) ⇥ X(g) where equality holds
is open, and it is not di�cult to show that it is non-empty. (Taking D0 = g[x], one must find an
e↵ective divisor D of degree g with `(D) = 1, or, equivalently `(K �D) = 0. Simply pick g points
x1, . . . , xg of X such that the restriction map H0(X,⌦1) ! Q

g

i=1 T
⇤
xi

is an isomorphism.) Given
(D,D0) 2 U , there is thus a non-zero meromorphic function f on X, unique up to scaling, such
that D00 = div(f)+D+D0� g[x] is e↵ective. We define a map U ! X(g) by taking (D,D0) to D00.
By working systematically with families of divisors, one shows that this is a map of schemes.

One can regard the above map as a rational map X(g) ⇥X(g) 99K X(g). As such, it satisfies the
axioms to be a group (it is a group object in the category of varieties with rational maps). Weil
showed that any such rational group variety can be upgraded to an actual group variety. Precisely,
there exists a group variety J (unique up to isomorphism) and a unique isomorphism of rational
group varieties X(g) 99K J

Finally, one must show that J represents G. One first shows that J is proper, and so the
rational map X(g) 99K J is an actual map. Then, one defines a map f : Div0(X) ! J as follows.
If D is a degree 0 divisor such that D + g[x] is e↵ective, then one regards D + g[x] as an element
of X(g) and takes its image in J . If D + g[x] is not e↵ective, then one finds a degree 0 divisor D0

such that D +D0 + g[x] and D0 + g[x] are both e↵ective, and defines f(D) = f(D +D0) � f(D0).
Working with families of divisors, f gives a map of functors G ! J . One then verifies that it is a
bijective on T -points.

2.6 Basic properties

Many of the basic properties satisfied in the analytic case remain true in the algebraic case.

• One can show that T0(Jac(X)) = H1(X,O) using the functor of points of Jac(X) and the
interpretation of the tangent space in terms of dual numbers.

• From this, one finds that H0(Jac(X),⌦1) is naturally isomorphic to H0(X,⌦1).
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• One again has a map f
x

: X ! Jac(X) given a base point x 2 X(k). On field points, this
takes a point y 2 X(k) to the degree 0 divisor [y]� [x]. On T -points, it does the same thing,
but one must use a relative notion of divisor.

• By definition, Jac(X)(k) is isomorphic to Pic0(X).

One again has a comparison between the first (co)homology groups of X and Jac(X), though
this now involves cohomology. This is most easily seen using Kummer theory. Suppose n is prime
to the characteristic of k, so that we have an exact sequence of sheaves on the étale site of X:

0 ! µ
n

! G

m

! G

m

! 0

Taking cohomology over k, and using the fact that every element of k
⇥

is an nth power, we see
that H1(X

k

,G
m

)[n] = H1(X
k

, µ
n

). Now, H1(X
k

,G
m

) = Pic(X
k

); since all torsion in this group is
of degree 0, we see that H1(X

k

,G
m

)[n] = Jac(X)[n](k). Replacing n with `n and taking an inverse
limit, we find T

`

(Jac(X)) = H1(X
k

,Z
`

(1)), where the (1) is a Tate twist.

2.7 In relative situations

Suppose C ! S is a family of smooth projective curves with geometrically connected fibers. One
can then define a functor G just as we did above. When C has a section over S, this functor is
representable by an abelian scheme Jac(C), which one would call the relative Jacobian.

One reason this is relevant for us is as follows. Suppose R is a DVR with fraction field K, let
X/K be a curve, and let J be its Jacobian. Suppose we can find a nice model of X over R (smooth,
projective, geometrically connected fibers). Then the relative Jacboian of this model is an abelian
scheme extending J . This shows that J has good reduction.
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