The Finite Element Method for Problems in Physics

Coding Assignment 1

Consider the following differential equation of elastostatics, in strong form:

Find u satisfying

$$(E A u_{,x})_{,x} + f A = 0$$
, in $(0, L)$,

for the following sets of boundary conditions and forcing function (\bar{f} is a constant):

(i)
$$u(0) = g_1, u(L) = g_2, f = \bar{f}x,$$

(ii)
$$u(0) = g_1$$
, $EAu_{,x} = h$ at $x = L$, $f = \bar{f}x$,

where
$$E=10^{11}$$
 Pa, $A=10^{-4}$ m², $\bar{f}=10^{11}$ Nm⁻⁴, $L=0.1$ m, $g_1=0,\,g_2=0.001$ m, and $h=10^6$ N.

Coding Instructions: Write a one-dimensional finite element code to solve the given problem, following these requirements:

- Code (a) linear, (b) quadratic and (c) cubic order Lagrange polynomial basis functions.
- Include a function to calculate the L^2 norm of the error between the finite element solution (u^h) with the exact solution (u), given by $\sqrt{\int_{\Omega} (u-u^h)^2 dx}$.
- All integration in K_{local} , F_{local} , and the L² norm of the error should be done by Gaussian quadrature (see Lecture 4.11), instead of using the analytical solution to the integrals shown in the lectures.