The Finite Element Method for Problems in Physics

Coding Assignment 2

Solve the steady state problem of heat conduction

PDE	$-\nabla \cdot \boldsymbol{j} = \boldsymbol{f}$
Constitutive relation	$oldsymbol{j} = -oldsymbol{\kappa} abla u$
Neumann b.c.	$-m{j}\cdot\hat{m{n}}=h ext{ on } \partial\Omega_j$
Dirichlet b.c.	$u = a \text{ on } \partial \Omega_u$

with the following boundary conditions using the specified meshes and linear basis functions. Use $\bar{\kappa} = 385$ watt.m⁻¹K⁻¹, where $\kappa_{ij} = \bar{\kappa}\delta_{ij}$. Assume j = 0 watt.m⁻² on all edges/surfaces where no temperature/flux conditions are specified.

- 1. (2D Quadrilateral Mesh): $(x \in [0, 0.03], y \in [0, 0.08], \text{ use a 15 x 40 element mesh.})$ $u(x) = 300(1 + c_0x) \text{ K along } y = 0 \text{ m (bottom nodeset)} \text{ and } u(x) = 310(1 + \hat{c}_0x^2) \text{ K along } y = 0.08 \text{ m}$ $(top \ nodeset) \text{ where } c_0 = \frac{1}{3}K.m^{-1}, \ \hat{c}_0 = 8K.m^{-2}.$
- 2. (3D Hexahedral Mesh): $(x \in [0, 0.04], y \in [0, 0.08], z \in [0, 0.02],$ use a 8 x 16 x 4 element mesh) $u(y, z) = 300(1 + c_0(y + z))$ K along x = 0 m (left nodeset) and $u(y, z) = 310(1 + c_0(y + z))$ K along x = 0.04 m (right nodeset)

where
$$c_0 = \frac{1}{3}K.m^{-1}$$
, $\hat{c}_0 = 8K.m^{-2}$.