The Finite Element Method for Problems in Physics

Coding Assignment 4

Consider a three-dimensional domain defined by $x_1 = [0,1]$ m; $x_2 = [0,1]$ m; $x_3 = [0,0.1]$ m. Solve the steady state and transient heat conduction problems with the following boundary conditions and initial conditions. Use $\rho = 3.8151 \times 10^6 \text{ N.m}^{-2} \text{K}^{-1}$ (specific heat per unit volume), $\kappa = 385 \text{ watt.m}^{-1} \text{K}^{-1}$, where $\kappa_{ij} = \kappa \delta_{ij}$. Assume j = 0 watt.m⁻² on all edges/surfaces where no temperature/flux conditions are specified. Use a mesh of 20 x 20 x 1 elements.

- 1. (Steady State problem): Boundary conditions u=300 K along $x_1=0$ m and u=310 K along $x_1=1$ m.
- 2. (Transient problem): Boundary conditions u=300 K along $x_1=0$ m, u=310 K along $x_1=1$ m. Initial conditions u=300 K for $x_1<0.5$ m and $u=300+20*(x_1-0.5)$ K for $x_1\geq0.5$ m.

Your code should solve both the steady state and transient heat conduction problems using linear basis functions. You should use the v-method to solve for the transient solution. Your code should be able to use Backward Euler, Forward Euler, and Mid-Point schemes. Your code should also calculate the L_2 norm of $(u_{steadystate} - u_{t_n})$ at a given time step.