Continuum Physics

Problem set 1

Problem 1.

Show that the vector $a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3$ is normal to the plane whose equation is ax + by + cz = d.

Problem 2.

Show that $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = (\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b} - (\boldsymbol{b} \cdot \boldsymbol{c})\boldsymbol{a}$.

Problem 3.

Show that the permutation symbol, ϵ_{ijk} can be expressed as

$$\epsilon_{ijk} = \left| \begin{array}{ccc} \delta_{i1} & \delta_{i2} & \delta_{i3} \\ \delta_{j1} & \delta_{j2} & \delta_{j3} \\ \delta_{k1} & \delta_{k2} & \delta_{k3} \end{array} \right|.$$

Problem 4.

Prove the $\epsilon - \delta$ identity: $\epsilon_{ijk}\epsilon_{irs} = \delta_{jr}\delta_{ks} - \delta_{js}\delta_{kr}$.

Problem 5.

If v is any vector and \hat{n} is any unit vector, show that v can be resolved into a component parallel to \hat{n} and a component perpendicular to it:

$$v = (v \cdot \hat{n})\hat{n} + \hat{n} \times (v \times \hat{n}).$$

Problem 6.

Prove the following, given that T is an arbitrarily chosen tensor of order 2:

- (i) If S is a symmetric, second-order tensor, then $S: T = S: T^{T} = S: [\frac{1}{2}(T + T^{T})].$
- (ii) If \boldsymbol{W} is a skew-symmetric, second-order tensor, then $\boldsymbol{W}: \boldsymbol{T} = -\boldsymbol{W}: \boldsymbol{T}^{\mathrm{T}} = \boldsymbol{W}: [\frac{1}{2}(\boldsymbol{T} \boldsymbol{T}^{\mathrm{T}})]$.
- (iii) If S is symmetric and W is skew-symmetric, then S: W = 0.

Problem 7.

Let Q be an orthogonal tensor and let e be a vector such that Qe = e.

- (i) Show that $\mathbf{Q}^{\mathrm{T}}\mathbf{e} = \mathbf{e}$.
- (ii) Suppose W is a skew-symmetric tensor. Define its axial vector, $\hat{\boldsymbol{w}}$ by

$$oldsymbol{W}oldsymbol{a} = \hat{oldsymbol{w}} imes oldsymbol{a}$$

for any vector \boldsymbol{a} . Determine the components of $\hat{\boldsymbol{w}}$ in terms of the components of \boldsymbol{W} .

(iii) Let \hat{w} be the axial vector corresponding to the skew part of Q. Show that \hat{w} is parallel to e.

Problem 8.

Show that if $\hat{\boldsymbol{w}}$ is the axial vector of a skew-symmetric tensor \boldsymbol{W} , then

$$\|\hat{\boldsymbol{w}}\| = \frac{1}{\sqrt{2}} \|\boldsymbol{W}\|.$$

Note: The *Euclidean norm* of a vector \boldsymbol{a} is denoted $\|\boldsymbol{a}\|$, and is given by $\|\boldsymbol{a}\| = (\boldsymbol{a} \cdot \boldsymbol{a})^{\frac{1}{2}}$. This is the same as the *magnitude* of \boldsymbol{a} , previously written as $|\boldsymbol{a}|$. Similarly, the *Euclidean norm* of a tensor \boldsymbol{A} is given by $\|\boldsymbol{A}\| = (\boldsymbol{A}: \boldsymbol{A})^{\frac{1}{2}}$.