Continuum Physics

Problem set 2

Problem 1.

Consider a scalar field, ϕ , vector fields u, v, a, b, c and d, and a tensor field A. Use indicial notation to show the following:

(i)
$$(\boldsymbol{a} \otimes \boldsymbol{b})(\boldsymbol{c} \otimes \boldsymbol{d}) = (\boldsymbol{b} \cdot \boldsymbol{c})\boldsymbol{a} \otimes \boldsymbol{d}$$

(ii)
$$\nabla \times (\nabla \phi) = \mathbf{0}$$

(iii)
$$\nabla \times (\nabla \times \boldsymbol{v}) = \nabla(\nabla \cdot \boldsymbol{v}) - \nabla^2 \boldsymbol{v}$$
, where $\nabla^2 \boldsymbol{v} := \nabla \cdot \nabla \boldsymbol{v}$

(iv)
$$\nabla \cdot (\nabla \times \boldsymbol{v}) = 0$$

(v)
$$\nabla(\phi \mathbf{v}) = \phi \nabla \mathbf{v} + \mathbf{v} \otimes \nabla \phi$$

(vi)
$$\nabla (\boldsymbol{u} \cdot \boldsymbol{v}) = (\nabla \boldsymbol{v})^T \boldsymbol{u} + (\nabla \boldsymbol{u})^T \boldsymbol{v}$$

(vii)
$$\operatorname{div}(\phi \mathbf{A}) = \phi \operatorname{div}(\mathbf{A}) + \mathbf{A} \nabla \phi$$

(viii)
$$\operatorname{div}(\boldsymbol{u} \otimes \boldsymbol{v}) = \boldsymbol{u} \operatorname{div}(\boldsymbol{v}) + (\nabla \boldsymbol{u}) \boldsymbol{v}$$

Problem 2.

Let I_1, I_2, I_3 be the principal invariants of a tensor A:

$$I_1 = \operatorname{trace}(\mathbf{A})$$

$$I_2 = \frac{1}{2} \left[\left(\operatorname{trace}(\boldsymbol{A}) \right)^2 - \operatorname{trace}(\boldsymbol{A}^2) \right]$$

$$I_3 = \det(\mathbf{A}).$$

Show that these quantities are indeed invariant under an orthogonal transformation of the basis vectors, given by $\tilde{e}_i = Qe_i$.

Problem 3.

New right-handed coordinate axes are chosen with the new origin at (4, -1, -2) and with $\bar{e}_1 = (2e_1 + 2e_2 + e_3)/3$ and $\bar{e}_2 = (e_1 - e_2)/\sqrt{2}$.

- (i) Express \bar{e}_3 in terms of the e_k .
- (ii) If $t = 10e_1 + 10e_2 20e_3$, express t in terms of the new basis.
- (iii) Express the old coordinates X_1, X_2, X_3 in terms of $\bar{X}_1, \bar{X}_2, \bar{X}_3$.

Problem 4.

A force of magnitude F acts in a direction radially away from the origin at a point (a/3, 2b/3, 2c/3) on the surface of the ellipsoid $(X^2/a^2) + (Y^2/b^2) + (Z^2/c^2) = 1$. Determine the components of the normal to the surface, and hence the component of the force perpendicular to the surface at (a/3, 2b/3, 2c/3).

Hint: Recall that the normal to a level surface $\phi(X,Y,Z) = \text{constant}$ is given by

$$\hat{\boldsymbol{n}} = \frac{\nabla \phi}{\|\nabla \phi\|}.$$

Problem 5.

A tensor P is a projection if P is symmetric and $P^2 = P$. Show that the following tensors are projections:

- (i) **1**
- (ii) **0**
- (iii) $e \otimes e$, where e is any unit vector.
- (iv) $1 e \otimes e$

Problem 6.

Let Q be an orthogonal tensor, and e_1 be of unit magnitude and such that $Qe_1 = e_1$ and $||e_1|| = 1$. Also let n be any vector orthogonal to e_1 and of unit magnitude: $n \cdot e_1 = 0, ||n|| = 1$. Let m be such that $m \cdot e_1 = 0, ||m|| = 1, m = Qn$ and $m \cdot n = \cos\theta$.

- (i) Sketch (graphically) the action of Q on e_1 and n.
- (ii) Show that Q can be written as:

$$Q = \mathbf{1}\cos\theta + (1 - \cos\theta)\mathbf{e}_1 \otimes \mathbf{e}_1 - (\mathbf{e}_2 \otimes \mathbf{e}_3 - \mathbf{e}_3 \otimes \mathbf{e}_2)\sin\theta,$$

where $\{e_1, e_2, e_3\}$ form an orthonormal triad.

(iii) Show that

$$(\boldsymbol{a} \otimes \boldsymbol{b} - \boldsymbol{b} \otimes \boldsymbol{a})\boldsymbol{h} = -(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{h}.$$

(iv) Show that Q can also be written as:

$$Q = \mathbf{1}\cos\theta + (1 - \cos\theta)\mathbf{e}_1 \otimes \mathbf{e}_1 + \sin\theta \mathbf{E},$$

where E is the skew-symmetric tensor of which e_1 is the axial vector.