Continuum Physics

Problem set 6

Problem 1.

Demonstrate whether the following strain energy functions for solids satisfy the following requirements: (a) Frame invariance with respect to rigid body motions on the current configuration. (b) Material isotropy. In each case, derive the expression for the first Piola-Kirchhoff stress tensor: $\mathbf{P} = \partial W/\partial \mathbf{F}$, where \mathbf{F} is the deformation gradient. In what follows, $\mathbf{C} = \mathbf{F}^{\mathrm{T}}\mathbf{F}$ is the right Cauchy-Green tensor, $\mathbf{b} = \mathbf{F}\mathbf{F}^{\mathrm{T}}$ is the left Cauchy-Green tensor, $\mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{1})$ is the Green-Lagrange strain tensor, and I_A, II_A, III_A are the first, second and third principal invariants of the tensor, \mathbf{A} . The principal stretches are $\lambda_1, \lambda_2, \lambda_3$. Finally, all logarithms are with respect to base e.

- (i) The St. Venant-Kirchhoff model: $W(\mathbf{E}) = \frac{1}{2}\mathbf{E}$: \mathbb{C} : \mathbf{E} , where the fourth-order elasticity tensor is $\mathbb{C} = \lambda \mathbf{1} \otimes \mathbf{1} + 2\mu \mathbb{I}$, and $\mathbb{I}_{IJKL} = \frac{1}{2}(\delta_{IK}\delta_{JL} + \delta_{IL}\delta_{JK})$. Note that λ here is the Lamé constant, not to be confused with a principal stretch.
- (ii) The St. Venant-Kirchhoff model extended to cubic crystals: $W(E) = \frac{1}{2}E$: \mathbb{C} : E, where the fourth-order elasticity tensor is $\mathbb{C} = \alpha(A_1 \otimes A_1 + A_2 \otimes A_2 + A_3 \otimes A_3) + \beta(1 \otimes 1 A_1 \otimes A_1 A_2 \otimes A_2 A_3 \otimes A_3) + 2\mu(\mathbb{I} A_1 \otimes A_1 A_2 \otimes A_2 A_3 \otimes A_3)$, $\mathbb{I}_{IJKL} = \frac{1}{2}(\delta_{IK}\delta_{JL} + \delta_{IL}\delta_{JK})$, $A_1 = e_1 \otimes e_1$, $A_2 = e_2 \otimes e_2$ and $A_3 = e_3 \otimes e_3$. Here, $\{e_1, e_2, e_3\}$ are the constant, orthonormal basis vectors. The constants α, β and μ bear no relation to each other.
- (iii) The quadratic-logarithmic model, used for metals: $W(\lambda_1, \lambda_2, \lambda_3) = \frac{1}{2}\lambda(\log \lambda_1 + \log \lambda_2 + \log \lambda_3)^2 + \mu[(\log \lambda_1)^2 + (\log \lambda_2)^2 + (\log \lambda_3)^2].$
- (iv) The compressible neo-Hookean model, used for polymers: $W(\mathbf{C}) = \frac{1}{4}\lambda(III_C 1) \frac{1}{2}(\frac{1}{2}\lambda + \mu)(\log III_C) + \frac{1}{2}\mu(I_C 3)$. Again, λ is the Lamé constant, not to be confused with a principal stretch.
- (v) A model used for soft biological tissue, encompassing the "entropic elasticity" response of long-chain molecules:

$$W(\boldsymbol{F}) = \underbrace{\frac{Nk_B\theta}{4A}\left(\frac{2r^2}{L} + \frac{L}{1-r/L} - r\right)}_{\text{chain molecule term}}$$

$$\underbrace{-\frac{Nk_B\theta}{4A}\left(\frac{1}{L} + \frac{1}{4r_0(1-\frac{r_0}{L})^2} - \frac{1}{4r_0}\right)4r_0^2\log\frac{r}{r_0}}_{\text{repulsive term}}$$

$$\underbrace{+\frac{\gamma}{\beta}(J^{-2\beta}-1) + 2\gamma\mathbf{1} : \frac{1}{2}(\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}-\mathbf{1})}_{\text{bulk compressibility}}.$$

Here, r and r_0 are the final and initial lengths of the long chain molecule, and are related by $r = r_0 \sqrt{M \cdot F^T F M}$, with M being the orientation of the long chain molecule in the reference configuration (say, before deformation). Additionally, the following constant scalars appear in the

model: N is the number of long chain molecules per unit volume, k_B is the Boltzmann constant, θ is the temperature, A is the persistence length of the molecules, L is the contour length of the molecules, γ and β are constants.

(vi) One I cooked up just now: $W(\boldsymbol{b}) = \alpha \boldsymbol{A} : \boldsymbol{b}$, where \boldsymbol{A} is some constant second-order tensor, and α is a scalar constant.