Continuum Physics

Midterm Exam

There are 3 questions, one one each page. All questions carry equal weight. Your answer should appear immediately below each question. Use the back of Page i to continue your answer to Question i, for i = 1, 2, 3. Use your own extra sheets if needed.

Problem 1.

 $A \in \mathbb{GL}(3)$ is a real, symmetric tensor. Its principal invariants are $I_1 = \text{trace}(A)$, $I_2 = \frac{1}{2}((\text{trace}(A))^2 - \text{trace}(A)^2)$ and $I_3 = \det(A)$. Its eigen values, λ , satisfy the characteristic equation:

$$\lambda^3 - \lambda^2 I_1 + \lambda I_2 - I_3 = 0 \tag{1}$$

Show that A itself satisfies the following tensorial equation: equation:

$$A^3 - A^2 I_1 + A I_2 - I_3 \mathbf{1} = \mathbf{0}, (2)$$

where **1** is the second-order isotropic tensor.

This is the Cayley-Hamilton Theorem restricted to real, symmetric tensors.

Problem 2.

Consider the following motion:

$$\varphi(X,t) = (\alpha \cdot t)Q(t)X \tag{3}$$

where α is a constant scalar and $\mathbf{Q}(t) \in SO(3)$.

- (a) Find the spatial velocity $\boldsymbol{v}(\boldsymbol{x},t)$.
- (b) Find the spatial acceleration a(x,t). What is the physical significance of the various contributions to a(x,t)?

Problem 3.

Consider a body, which in the reference configuration, Ω_0 , is a sphere of radius R. Its deformation gradient is \mathbf{F} .

- (a) If $F = \lambda \mathbf{1}$, where $\mathbf{1}$ is the usual second-order isotropic tensor, what is the shape of the body in its deformed configuration, Ω_t ?
- (b) If $\mathbf{F} = \lambda_1 \mathbf{e}_1 \otimes \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 \otimes \mathbf{e}_2 + \lambda_3 \mathbf{e}_3 \otimes \mathbf{e}_3$, where $\lambda_1 \neq \lambda_2 \neq \lambda_3$ are constants and $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a constant orthonormal basis, then what is the shape of the deformed configuration, Ω_t ? Provide an explicit parametrization for Ω_t .