Continuum Physics

Midterm Exam

There are 3 questions, one one each page. All questions carry equal weight. Your answer should appear
immediately below each question. Use the back of Page 7 to continue your answer to Question i, for ¢ = 1,2, 3.

Use your own extra sheets if needed.

Problem 1.
A € GL(3) is a real, symmetric tensor. Its principal invariants are I; = trace(A), I = $((trace(A))? —
trace(A)?) and I3 = det(A). Its eigen values, A, satisfy the characteristic equation:

N N4+ N, —13=0 (1)
Show that A itself satisfies the following tensorial equation: equation:
A% — AL + AL, — 131 = 0, (2)

where 1 is the second-order isotropic tensor.

This is the Cayley-Hamilton Theorem restricted to real, symmetric tensors.
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Problem 2.
Consider the following motion:

(X, 1) = (- )Q() X (3)
where « is a constant scalar and Q(t) € SO(3).
(a) Find the spatial velocity v(x, t).

(b) Find the spatial acceleration a(x,t). What is the physical significance of the various contributions to
a(x,t)?
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Problem 3.
Consider a body, which in the reference configuration, {2, is a sphere of radius R. Its deformation gradient
is F.

(a) If F = A1, where 1 is the usual second-order isotropic tensor, what is the shape of the body in its
deformed configuration, €27

(b) If F = Me1 ® e1 + \aea ® €3 + Azesz ® e3, where A\ # Ay # A3 are constants and {ej,es, e3} is a
constant orthonormal basis, then what is the shape of the deformed configuration, €2;? Provide an
explicit parametrization for €.
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