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Note to Students

Welcome to Statistics 250 at the University of Michigan!

This is the first summer term in which R and R Commander will be used as the software package
for Stats 250. Some of the reasons why we made this switch are:
* The ability to use R is a valuable skill recognized by employers.
e Other Statistics courses use R and this will make for an easier transition into these next
courses.
* Risafree, open source software that can be downloaded onto student machines, so
students can have access to it any time on their personal devices and won't have to use
Virtual Sites.

This lab workbook is designed for you to use in lab and as extra preparation for exams. In the
workbook, you will find the following materials:

Supplemental Material — great summaries for reference throughout the term:
1. R Commands Reference

Notation Sheet

Name That Scenario

Interpretation Examples

Summary of T-tests

Regression Outputin R

oukwN

Weekly Labs (numbered 1 to 12) — each lab contains the follow parts:

o Lab Background — objective and brief overview material, which is good to take a couple
minutes to read before you come to lab each week.

o Warm-Up Activity — quick questions for you to do before the In-Lab Project, usually a quick
review of concepts you have seen in lecture.

o ILP (In-Lab Project) — one or more activities you will work on in lab, in groups.

o Cool-Down Activity —questions for you to do after the ILP for further reflection and
application of the concepts covered in the ILP.

The Labs are designed to be interactive and to provide you with a complete example for each
concept. Completing the corresponding PreLab assignment (a link to video instructions for
PreLabs will be on Canvas and the Stat 250 YouTube channel) and reading the upcoming lab
background overview before lab each week is a good way to prepare for the various lab
activities.

Good luck in Statistics 250!
-- The Stat 250 Instructors and GSls

Special Thanks to the Statistics Graduate Students
Kit Clement
Sean Pikosz
Daniel Walter




For their substantial contributions to transition and modernize
the Lab Materials to the Awesome R computing package




Supplement 1: R Commands Summary

By Lab — For Quick Reference

Lab 1 - Bar Charts, Histograms, Numerical Summaries, Boxplots
Open a data file after loading R Commander: Data > Load data set

To produce a Histogram: Graphs > Histogram

To generate Descriptive Statistics: Statistics > Summaries > Numerical summaries
To produce a Bar Chart: Graphs > Bar Graph

To produce a Boxplot: Graphs > Boxplot

Lab 5 - Time Plots, QQ Plots

To produce a Sequence or Time Plot for the variable named “VARIABLE” in the data set “DATA”
you must type these two lines of code into the R Script box:
plot (DATA$VARIABLE, type ="1", main="Normal QQ Plot of
variable by name")

Note that you can find the dataset name in blue text at the top. To find variable names,
click View data set and look at the top row. To create the plot, highlight the above code and
click the Submit button.

To produce a QQ Plot: you can use the built in option under Graphs > Quantile-comparison plot
Or you can make a QQ plot for the variable “VARIABLE” in the data set “DATA” by typing these
two lines of code into the R Script box:

ggnorm(DATASVARIABLE, main="Normal QQ Plot of variable
by name")
qgline (DATAS$VARIABLE)

Then highlight this code and click the Submit button.

Lab 6 — One-Sample t Procedures for a Population Mean

To perform a One-Sample T Test for a population mean and obtain a confidence interval:
Statistics > Means > Single-sample t-test

Lab 7 — Paired t Procedures

To perform a Paired T Test and obtain a confidence interval: Statistics > Means > Paired t-test

To compute Differences: Data > Manage variables in active data set > Compute new variable.

Lab 8 — Independent Samples t Procedures



To perform Levene’s Test: Statistics > Variances > Levene’s Test
To perform a Two-Samples T Test and obtain a confidence interval: Statistics > Means >
Independent samples t-test

Lab 9 — One-way Analysis of Variance (ANOVA)

To perform an ANOVA: Statistics > Means > One-Way ANOVA

Lab 10 and 11 - Linear Regression

To produce the correlation (R) for all pairs of variables: Statistics > Summaries > Correlation
matrix

To produce a Scatterplot: Graphs > Scatterplot

To perform a Linear Regression: Statistics > Fit models > Linear regression

To produce a Residual plot and QQ Plot of residuals, first make sure you have the correct model
selected, then follow: Models > Graphs > Basic diagnostic plots

Lab 12 - Chi-Square Tests

To perform a Goodness of Fit Test: Statistics > Summaries > Frequency distributions. Make sure
to check the box to run a goodness of fit test, and then you can specify the null probabilities.

To perform a Test of Independence: Statistics > Contingency tables > Two-way table

To perform a Test of Homogeneity: Statistics > Contingency tables > Two-way table



Supplement 2: Notation Sheet

The table below defines important notations, including that used by R, which you will come
across in the course. This is not an exhaustive list, but it is a fairly comprehensive overview of
the “strange letters” used in the course.
Note: Blank cells mean there is no corresponding notation.

Notation used in R

Name Population Notation Sample Notation
Commander
Summary Measures
Mean u (read as “mu”) X (x-bar) Mean
Proportion p P (p-hat)
Standard deviation o (sigma) s Varies, often “sd”
Variance o’ s’ Variance
Sample size n n (sometimes N)
Confidence Intervals
L z* (z-star)
Multipliers
t* (t-star)
Margin of error m, m.e.

Hypothesis Testing

z
Test statistics t t
Note: t, F,and ,? statistics F F
have degrees of freedom
(abbreviated df) associated
with them. Look for these X2 (chi-square) Chi-square
on your Formula Card.
Significance level  (alpha)

Pr(*)

p-value p-value (the star will depend on

what test is being used)




Name

Population Notation

Sample Notation

Notation used in R

Analysis of Variance (abbreviated ANOVA)

Sum of squares for

Row labeled with the

FOUDS SSG grouping variable,
group column labeled Sum Sq
Sum of squares for Row labeled Residuals,

SSE
error column labeled Sum Sq
Row labeled with the
Mean square for MSG grouping variable,
groups column labeled Mean
Sq
Row labeled Residuals,
Mean square error MSE column labeled Mean
5q
Regression
Response (dependent) (given by name of y-
variable y y variable)
Predicted (estimated) E(y) (expected value of N
) Y (y-hat)

esponse y)

Explanatory X X (given by name of x-
(independent) variable variable)
B (look in the row

-int t beta-not b
y-intercep B, ) © labeled (Intercept))

B (look in the row
Slope B, (beta-one) by labeled with the name

of the x-variable)
Coefficient of . Values in Correlation

correlation

Matrix

Coefficient of
determination

Multiple-R Squared

Error terms vs
Residuals

€ (error terms)

e (residuals)

Unstandardized
residuals




Supplement 3: Name That Scenario

The first thing to do in any research inference problem is determine what type of inference
problem it is. This will help in deciding what procedure/formulas are appropriate to use. The
following questions can help you determine the data scenario you are working with.

Please note, when answering, “How many variables are there?” do not count the variable which

defines the populations (if there is more than one population).

0 How many populations are there?

One Two More than two

0 How many variables are there?

One Two

0 What type of variable(s)?

Categorical Quantitative

QThen use the following table to determine which type of inference would be appropriate for
this scenario.

Note the corresponding parameter is in parentheses, where appropriate.



Number of Populations

Number of

One

Variables and Type One Two More Than Two
1-sample inference | O 2 indep. samples Q Chi-square:
for population inference for the Homogeneity
proportion (p) difference between (Lab 12)
(Labs 3-4) 2 population

. proportions
Categorical Chi-square: (P1 - pa)
Goodness of Fit
(Lab 12) Q Chi-square:
Homogeneity
(Lab 12)
1-sample inference | O 2 indep. samples O ANOVA

Quantitative

for population

mean (u)
(Lab 6)

Paired samples
inference for a
population mean
difference (up)
(Lab 7)

inference for the
difference between
2 population
means

(W1 - ua)
(Lab 8)

(wi —where there is
one u; for each
population)

(Lab9)

Two

(relationship)

) Chi-square:
Categorical
(relationship) Independence
P (Lab 12)
. Regression
Quantitative
(B1)

(Labs 10-11)




Supplement 4: Interpretation Examples

In 1980, Bausch and Lomb Corporation developed a new type of extended-life contact lens
made of silicone, which it claimed had a useful life of more than 4 years. During the research
and development period, a random sample of 6 contact wearers was asked to wear the new
contact lenses and record how long they lasted. The average useful life of the six pairs of lenses
was 4.6 years, with a standard deviation of 0.49 years.

a. Interpretation of the Standard Deviation s:
An estimate of the average distance of the observed useful lives of these lenses from their
mean useful life of 4.6 years is about 0.49 years.

Note: if given the true population standard deviation (o) this becomes:

The average distance of the observed useful lives of these lenses from their mean useful life
of 4.6 years is about 0.49 years.

Interpretation:

The standard error is an estimate of the average distance of all the possible sample means
from the true population mean (roughly). In context: An estimate for the average distance
of xbar (sample averages of contact life from samples of size 6) from the population mean
useful life, y, is roughly 0.20 years.

c. Construct a 90% confidence interval for the population mean life of all such silicone-based
lenses:

4.6+ (2.015)(0.200) = (4.197,5.003)

Interpretation of the Interval:

This interval provides a range of reasonable values for the population mean useful life, u.
We would estimate the population mean useful life, i, to be between 4.197 years and 5.003
years, with 90% confidence.

Interpretation of the 90% Confidence Level:

If we repeatedly took new samples of the same size (computing new 90% confidence
intervals each time), we would expect 90% of these resulting intervals to contain the
population mean life, u.

d. State the hypotheses to test the claim made by Bausch and Lomb about their new
contact lens; that is, test if the population mean useful life is more than 4 years.

H,:u=4, H,:u>4,withan observed t-test statistic of



F-u, 46-4
Y 0200

The p-value for this test is the probability of getting a t-test statistic at least as extreme as
the observed test statistic, assuming the null hypothesis is true. So we have the p-value =
Prob(T >= 3 | Ho=True) found under the t(5) distribution. This p-value turns out to be equal
to 0.015.

=3.00.

Interpretation of the value of the test statistic t = 3.00 in terms of a distance: The observed
sample mean was 3 average distances (i.e. 3 standard errors) above the hypothesized mean
of 4. In other words, since the standard error for xbar was .2 it took 3 of them to get from 4
(value under null) to 4.6 (test statistic value)

Interpretation of the resulting p-value of 0.015: If the null hypothesis was true (the
population mean useful life is just 4 years) and this procedure (study) was repeated many
times, we would expect to see a t-test statistic value of 3.00 or larger in only 1.5% of the
repetitions. Thus are data are somewhat unusual under the null hypothesis theory,
providing evidence for the alternative theory that the population mean useful life is greater
than 4 years.

At a 10% significance level, what is the decision?
Reject H, since the p-value is less than 0.10.

What is the conclusion? There is sufficient evidence to conclude that the population mean
useful life of the new lenses is greater than 4 years.

NOTE: These interpretations can be extended to the any test and confidence interval,
adjusting for the different parameters, different directions of extreme, different test
statistics, etc.




Supplement 5: Summary of the Main t-Tests

The three inference scenarios presented in Labs 6, 7, 8 are: one-sample t procedures, paired t
procedures, and two independent samples t procedures. Data exploration is always essential
to determining whether the model you want to use is appropriate. That is, we need to check
the assumptions. (Recall that checking assumptions is the second step in performing a
hypothesis test.)

The t procedures have the following general assumptions:

1. Each sample is a random sample — (the observations can be viewed as realizations
of independent and identically distributed random variables). In the paired t
procedures, the differences are assumed a random sample.

2. Each sample is drawn from a normal population, that is, the response variable has a
normal distribution for each population. In the paired t procedures, the population
of differences is assumed to have a normal distribution. In the two-sample case,
both populations of responses are assumed to have normal distributions.

You need normality of the underlying population for the response in order to have
normality for the sample mean. In the case where you do not have a normal
population, you can still have normality of the sample mean if you have a large
enough sample size (most texts state that a sample size of at least 25-30 is
required). Thus we will accept at least 25 as large enough to assume CLT holds for
non-normal populations.

3. For the two independent samples t procedures, we also assume that the two
samples are independent. We also need to assess whether the two population
variances can be assumed equal in order to decide between the pooled and the
unpooled t tests.

Graphical tools can be used to check these assumptions (see Labs 1 and 5 for more details
about these various graphs).

Time Plots (or Sequence Plots): If your quantitative data have been gathered over time, then a
time plot can be used to determine if the underlying process that generated that time
dependent data appears to be stable. For example, in paired design problems we assume our
set of differences calculated from the paired observations (d,, d», ..., d,) are a random sample.
To check this, the values should be plotted by time to see if it is plausible that all values
randomly came from one parent population. If that was the case the graph would be stable,
with no patterns and constant mean/variance.

Remember:

#1 Time or Sequence plots are useful for checking stability only when the data are ordered in
some sense. If there is no inherent order to the data, a sequence plot should not be
made.



#2 If a Time plot makes sense to be examined and does show evidence of instability, it would
not make sense to treat those observations as being a random sample; thus it would not
be appropriate to make a histogram, QQ plot, or boxplot of the observations. No
statistical procedure taught in this course is appropriate for non-stable data.

Histograms: Histograms are especially useful for displaying the distribution of a quantitative
response variable. You could make a histogram of the observations in a one-sample problem, of
the differences in a matched pairs design, and of each of the two samples separately in the
independent samples design. Examine the histogram for evidence of strong departures from
normality, such as bimodality or extreme outliers. Since you are just plotting data (just a sample
and not the entire population of responses), your histogram may not look perfectly bell-shaped
or normal.

QQ plots: QQ plots (or quantile plots or normal probability plots) are generally better than
histograms for assessing if a normal model is appropriate. If the points in a QQ plot fall
approximately in a straight line (with a positive slope) then the normal model assumption is
reasonable.

Boxplots: Boxplots are most useful for assessing the validity of the assumption of equality of
population variances in the two independent samples design. We would see if the IQRs
(shown graphically by the length of the boxes) are comparable, and also compare the overall
ranges. If they do have comparable lengths or sizes (they do not need to be lined up), then we
have support that the equality of population variances assumption is reasonable. We would
also want to compare the two sample standard deviations themselves, and Levene’s test of
equality of the two population variances may also be available.

Name that Scenario Practice for the Three T Tests:

Having just reviewed the three main t-test inference scenarios, you should understand the testing
procedures and be able to interpret the results of a test. However, it is important to know when each
scenario applies. Read each of the following inference scenarios and determine which of the three t-test
procedures would be most appropriate: the one-sample t-test, the paired t-test, or the two-independent
samples t-test.

1. Avresearcher is studying the effect of a new teaching technique for middle school students. One class
of 30 students is taught using the new technique and their mean score on a standardized test is
compared to the mean score of another class of 27 students who were taught using the old
technique.

2. A company claims that the economy size version of their product contains 32 ounces. A consumer
group decides to test the claim by examining a random sample of 100 economy size boxes of the
product, since they have received reports that the boxes contain less than the 32 ounces claimed.

3. At some universities, athletic departments have come under fire for low academic achievement
among their athletes. An athletic director decides to test whether or not athletes do in fact have
lower GPAs. A random sample of 200 student athletes and a random sample of 500 non-athlete
students are taken and their GPAs are recorded.




4. As part of a biology project, some high school students compare heart rates of 40 of their classmates
before and after running a mile. They want to see if the heart rate of students their age is faster after
running a mile than before, on average.

5. A hospital is studying patient costs; they decide to follow 500 surgery patients’ hospital and medical
bills for a year after surgery, and compare them to the estimated costs provided to the patients
before surgery. They want to see if the estimated and actual costs are comparable on average.

6. A chemical process requires that no more than 23 grams of an ingredient be added to a batch before
the first hour of the process is complete. An analyst feels that due to current settings more than 23
grams may actually be added. If the analyst is correct, the settings need to be altered and recent
batches recalled. A random sample of 25 batches is obtained from the machine that is supposed to
add the ingredient. The measurements are used to test the analyst’s claim.

Supplement 6: Regression Output in R

There are several different pieces of output for regression. In this example, we will be using the
dentistry.Rdata data set. In these models, the explanatory x variable is DNA, and the response
y variable is PLAQUE.

In some situations, we may have many potential predictors of our response variable — here
there is just one potential explanatory variable, DNA. To analyze the correlation potential
predictors to our response variable, we can create a Scatterplot matrix. We see the following
matrix for our variables here:

DNA
PLAQUE
DNA 1.0000000
0.8557985
PLAQUE 0.8557985
1.0000000

This matrix shows us the correlation coefficient, r, for all pairs of variables. The correlation
coefficient measures the strength of the linear association between the two variables. The
closeritis to +1 or -1, the stronger the linear association.

We choose a pair by picking a column and row for each variable, and checking the value for that
column and row pair. We can see that each pair is listed twice in the matrix (DNA-PLAQUE and
PLAQUE-DNA), and that each variable is perfectly correlated with itself (r = 1). The main
information here that we gather here is that the correlation of our model for predicting plaque
using DNA is 0.856.

Next, we can generate our model, and R will give us a summary of the model, which looks like
this:

call:
Tm(formula = PLAQUE ~ DNA, data = dentistry)

Residuals:
Min 1Q Median 3Q Max
-6.7639 -3.5107 -0.9454 4.0531 6.2532




Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.54830 8.19299 -0.067 0.94829
DNA 0.16685 0.03566 4.679 0.00158 =**
Signif.codes: 0 '***' 0.001 '**' 0.01 '*" 0.05 '.'
0.1 ' "1
Residual standard error: 4.851 on 8 degrees of
freedom
Multiple R-squared: 0.7324, Adjusted R-squared:
0.6989

F-statistic: 21.89 on 1 and 8 DF, p-value: 0.001584

The summary starts with a Call line — this just tells you what model you are looking at. Here,
PLAQUE ~ DNA is saying that we are predicting PLAQUE using the explanatory variable DNA.
Next, we see that R gives us some quartiles for our residuals. We might find the median residual
especially useful, as having a median of -0.9454 here tells us that the majority of residuals are
negative.

Next, we see the Coefficients table, which gives us a wealth of information. In this section, the
least square estimates for the regression line are given. These estimated regression coefficients
are found under the column labeled Estimate. The estimated slope is next to the independent
variable name (in this example it is DNA), and the estimated intercept is next to (Intercept). So,
by is the coefficient for the variable (Constant), and b, is the coefficient for the independent
variable x in the model. The next column heading is Std. Error, which provides the
corresponding standard error of each of the least squares estimates. Also produced in this
table, are the t-test statistics in the column labeled t value and Pr(>|t]), which reports the two-
sided p-values for these t-test statistics.

In the last few lines of output, we get our standard deviation, R-squared, and F-statistic. The
Residual standard error gives the value of s, the estimate of the population standard deviation
o. The next line gives two values, Multiple R-squared and Adjusted R-squared. We ignore the
Adjusted and just look at the Multiple R-squared. This value, which is the square of the
correlation has a useful interpretation in regression. It is often called the coefficient of
determination, or r>, and measures the proportion of the variation in the response that can be
explained by the linear regression of y on x. Thus, it is a measure of how well the linear
regression model fits the data. The final line is an F-statistic, which also gives us a way to test
Ho: B1 = 0 versus H,: B; = 0, but it only allows for a two-sided test. This F-statistic comes from an
ANOVA table, which we can generate separately using Model > Hypothesis tests > ANOVA
table. Make sure to select the Type | option to get the ANOVA table into a familiar format.

Analysis of variance Table

Response: PLAQUE

Df Sum Sq Mean Sq F value Pr(>F)
DNA 1 515.14 515.14 21.894 0.001584 **
Residuals 8 188.23 23.53

We see that this ANOVA gives us the same F-statistic as before (F = 21.89). It also gives us some
measures of variance within our model, the Regression Sum of Squares (SSModel = 515.14), and
leftover residual variance, or the Residual Sum of Squares (SSRes = 188.23). We can use this to
calculate r?, or the proportion of variability in plaque that can be explained by its linear



relationship with DNA, by taking the model variability and dividing by the total variability —
r’=515.14/(515.14+188.23) = .7324. Another value we can get again is an estimate of our total
variability o, or the residual standard error, by taking the square root of the MSRes = 23.53,
much like we did for ANOVA to find the estimate of the pooled standard deviation.

Finally, the ratio of the Mean Squares provides the F statistic which tests if the slope is
significantly different from zero (i.e. if there is a significant non-zero linear relationship between
the two variables — Ho: 1 = 0 versus H,: 31 = 0.) The Pr(>F) is the corresponding p-value for the F
test of these hypotheses. In simple linear regression, the 2-sided t-test in the Coefficients
output for the slope is equivalent to the ANOVA F-test. Notice that the square of the t-statistic
for testing about the slope is equal to the F-statistic in the ANOVA table, and the corresponding
p-values are the same.

Interpretation of estimated slope b;:
According to our regression model, we estimate that increasing DNA by one unit has the effect
of increasing the predicted plaque by .167 units.

Interpretation of r’:
According to our model, 73% of variation in plaque levels can be accounted for by its linear
relationship with DNA.

Decision for test of a significant linear relationship:
Since the p-value = .002 is less than the significance level a = .05, we can reject the null
hypothesis that the population slope, $;, equals 0.

Conclusion: There is sufficient evidence to conclude that in the linear model for plaque based
on DNA the population slope, 3, does not equal zero. Hence, it appears that DNA is a
significant linear predictor of plaque.




Checking the Simple Linear Regression Assumptions

Here is a summary of some graphical procedures that are useful
in detecting departures from the assumptions underlying the
simple linear regression model.

1. LINEARITY: Do a scatter plot of y versus x.
The plot should appear to be roughly linear.

2. NORMALITY: Examine a QQ plot of the residuals to check
on the assumption of normality for the population (true)
error terms. An example QQ plot is shown below.

3. CONSTANT VARIANCE (or STANDARD DEVIATION) of the
population (true) error terms: Make a plot of the residuals
versus the fitted y values (y). This plot is called a residuals
vs fitted plot. The residuals represent what is left over
after the linear model has been fit. The residuals vs fitted
plot should be a random scatter of points in roughly a
horizontal band, with no apparent pattern. An example
residuals vs fitted plot is shown at the right. Sometimes
this plot can also reveal departures from linearity (i.e. that
the regression analysis is not appropriate due to lack of a
linear relationship).
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