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Lab 11: Regression Inference

Objective: Last lab, we looked at a linear regression model for Stats 250 scores, and started to examine
if it was an appropriate to use a linear model. In this lab, you will learn how to perform hypothesis tests
and compute confidence intervals in regression and assess if the linear relationship is significant, as well
as learn how to check the assumptions needed for these inference procedures to be valid.

Application: Recall our example from last lab -- Pam believes that the number of Facebook friends a
person has could interfere with the number of hours they spends socializing offline. She wants to be
able to predict the number of hours a person spends socializing offline for a given number of Facebook
friends. She will collect data from her friends and examine the relationship between these two variables.
Pam will be able to fit a simple linear regression model if the relationship between these variables is
linear.

Overview: To do this, Pam has fit a linear regression model, which is what will also be fit during the lab.
Pam’s regression is based on a linear model relating the number of Facebook friends to the mean
amount of time spend socializing offline as follows: E(time spent socializing offline) = o+ P1(number of
Facebook friends). Here 3, and f; are parameters — fixed but unknown constants. Specifically, S, is the
population y-intercept (the amount of time spent socializing offline when the number of Facebook
friends is zero) and p; is the population slope (the change in the mean time spent socializing offline for
every additional Facebook friend). These two values are unknown, but can be estimated using the least
squares criterion. The resulting estimated regression line is generally written as y =p, +5,(x). The

estimates, by and b, are referred to as the least squares estimates of 5, and ;.

There are also several assumptions that Pam must check in order for inferences to be valid. First, the
time spent socializing offline must be normal with a mean that varies linearly with the number of
Facebook friends and a standard deviation that does not depend on the predicted socializing time. To
check her assumption Pam would create a residuals vs fitted plot: a plot with residuals on the y-axis and
the predicted social time on the x-axis. For this assumption to hold, the residuals should be randomly
scattered.

Pam must also assume that the error terms are normally distributed and are identically distributed. To
check this assumption about the normal distribution she will create a QQ plot of the residuals. To check
if the errors are identically distributed, she will create a time plot of the residuals and look for stability.



Warm-Up: Check Your Understanding
A linear regression model was built to assess the relationship between the weight (pounds) and the
height (inches) of men aged 18 to 29. The estimate of the least squares regression line is given to be:

Predicted weight = -250 + 6*(Height)

a. What is the predicted weight for a male with a height of 70 inches?
250 170 420

b. We know that the average height of a male aged 18 to 29 is 72 inches. If we were to construct a
95% confidence interval for the weight of a male that is 72 inches tall, how would the width of that
interval compare to a 95% confidence interval for the weight of a male that is 70 inches tall?

NARROWER WIDER STAYS THE SAME

ILP: Is There a Significant Linear Relationship Between Final Exam Score
and Our Selected Predictor?

Recall our previous lab on the Stats 250 data. Is the explanatory variable that we chose a useful linear
predictor for the Final Exam score? That is, do we observe a significant, non-zero linear relationship
between the Final Exam Score and our selected predictor variable?

Remember that another way to make inferences about the significance of the linear relationship is
through a confidence interval for the population slope. Further, recall the basic form of a confidence
interval: point estimate + (a few) standard errors.

Most standard computer regression output provides the slope estimate and its standard error, and the
“few” will correspond to a t* value for the corresponding confidence level with degrees of freedom for
regression of n — 2. Since a confidence interval provides a range of reasonable values for the parameter,
it can be used to perform two-sided hypothesis tests by seeing whether the hypothesized value falls in
the interval or not.

Task: Assess if the chosen explanatory variable is significant in the linear model.

NOTE: You may have to re-run some of the output that we ran in our last class, specifically
creating the regression model. Refer to the last lab for instructions on how to do this.

Hypothesis Test:
1. State the Hypotheses: Hg: and Hj: ,

where represents:

Determine Alpha: We were told the significance level was 5%.

Remember: Your hypotheses and parameter definition
should always be a statement about the population(s) under study.

2. Checking the Assumptions - Covered in the next activity.

3. Compute the Test-Statistic and calculate the p-value:
Test-Statistic



a.

Using the computer output generated by the regression model, which two test statistics could
you use to test these hypotheses? Give the value for each test statistic.

t= F =

Check it out: What happens if you square your t statistic value? Think about the shape of the t
distribution and if you squared all the t values, it would look like an F distribution.

Calculate the p-Value:

b.

The p-value for both test statistics is the same. What is that p-value?

Note: this p-value is for testing the two-sided alternative H,: B; # 0. If we want to conduct a
one-sided version of the alternative hypothesis we could only use the t test statistic and would
need to work with the two-sided p-value in the output to find the appropriate one-sided p-
value. Drawing a quick sketch of what that one-sided p-value looks like can help.



c. We could also get the F-test statistic value from running an ANOVA table to summarize the
variance in our regression model. To do this, go to Models > Hypothesis Tests > ANOVA. To
ensure that we see the table in a familiar format, select Sequential “Type I” as our option and
click OK. Use this ANOVA table to calculate the r’value, and verify that this is the same as last
lab. Remember that SSTotal = SSRegressionModel + SSError(or residuals).

2

SSRegression model
re = =

SSTotal

4. Evaluate the p-value and Conclusion
Evaluate the p-value:
What is your decision at a 5% significance level? Reject Hy Fail to Reject Hy

Remember: Reject Hy <& Results statistically significant
Fail to Reject Hg <& Results not statistically significant

Conclusion:
What is your conclusion in the context of the problem?

Note: Conclusions should always include a reference to the population parameter(s) of interest.
They should not be too strong; you can say that you have sufficient evidence,
but do NOT say that we have proven anything true or false.

5. Confidence Intervals (Cl):
a. Generate the confidence interval for estimating the population slope using Models >
Confidence Intervals. Give the 95% confidence interval for the population slope.

b. Provide an interpretation of the resulting interval in context.

c. Based on the confidence interval, would you reject the null hypothesis at a 5% significance
level? Circle one: Yes No
Explain.
Did your conclusion here match the one you made in part 4?




ILP: Is the Linear Model Appropriate? Are Assumptions Met for Inference?

You will produce and examine the residuals from the regression line as well as create some plots to
assess the fit of the linear model. This will also serve to evaluate the validity of the testing and
confidence intervals performed in the earlier activities.

Regression assumptions may be stated in terms of the response variable or in terms of the error terms.
The statistical model for simple linear regression assumes that for each value of x, the observed values
of the response are normally distributed with some mean (that may depend on x in a linear way) and a
standard deviation o that does not depend on x. For each x, Y is N(E(Y), o), where E(Y) = B, + B:1x.

Thinking about the error terms, we can say the true error terms (those that we do not observe) are the
difference of the response and the true mean (for a given x). These errors are to have a normal
distribution with a mean of 0 and a standard deviation of o (that does not depend on x).

Task: Create diagnostic plots for regression and check that assumptions are met.
To create diagnostic plots for regression, go to Models > Graphs > Basic diagnostic plots.

1. The graph generated in the upper left shows a scatterplot of residuals on the y-axis against fitted y
values on the x-axis. This is called a residuals vs fitted plot. Sketch the general pattern of the plot.

What assumption of the error terms does this plot help assess?
What conclusion can you draw from this plot?

2. The graph generated in the upper right shows a QQ plot of residuals.
Sketch the general pattern of the plot.

What assumption of the error terms does this plot help assess?

Based on the plot what is your conclusion about this assumption?

Cool Down: Check Your Understanding
1. Which is the only test statistic you can use if you want to test if the Final Exam score is a significant
positive linear predictor of your chosen explanatory variable?

2. Some other Stats 250 students were interested in predicting their final exam score, so you
calculated some prediction intervals for your curious friends. Some of your friends Exam 2 scores
are given below. Which score will have the narrowest prediction interval? (Hint: You may need to
run some summary statistics to do this)

52 55 58 61 64 67






